
ABSTRACT

LIN, CHUNG-YI. Determination of the Fracture Parameters in a Stiffened Composite

Panel. (Under the direction of Dr. F. G. Yuan)

A modified J-integral, namely the equivalent domain integral, is derived for a

three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along

the crack front using the finite element method. Based on the equivalent domain integral

method with auxiliary fields, an interaction integral is also derived to extract the second

fracture parameter, the T-stress, from the finite element results. The auxiliary fields are

the two-dimensional plane strain solutions of monoclinic materials with the plane of

symmetry at x3=0 under point loads applied at the crack tip. These solutions are

expressed in a compact form based on the Stroh formalism. Both integrals can be

implemented into a single numerical procedure to determine the distributions of stress

intensity factor and T-stress components, Tll, T13, and thus T33, along a three-dimensional

crack front.

The effects of plate thickness and crack length on the variation of the stress

intensity factor and T-stresses through the thickness are investigated in detail for through-

thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened

panels under pure mode-I loading conditions. For all the cases studied, Tll remains

negative. For plates with the same dimensions, a larger size of crack yields larger

magnitude of the normalized stress intensity factor and normalized T-stresses. The results

in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the



thickerpanels,thefractureparametersevaluatedthroughthethickness,excepttheregion

nearthefreesurfaces,approachtwo-dimensionalplanestrainsolutions.In summary,the

numericalmethodspresentedin this researchdemonstratetheir high computational

effectivenessandgoodnumericalaccuracyin extractingthesefractureparametersfrom

thefiniteelementresultsin three-dimensionalcrackedsolids.
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1 Introduction

The study of fracture mechanics emerged in the early twentieth century. Among a

handful of researchers, Griffith's idea of "minimum potential energy" [1] provided a

foundation for all later successful theoretical studies of fracture, especially for brittle

materials. But it was not until after World War II that fracture mechanics developed as a

discipline. Derived from Griffith's theorem, the concept of energy release rate, G, was

first introduced by Irwin [2], and was in a form that is more useful for engineering

applications. He defined the energy release rate, or the crack extension force tendency so

that it can be determined from the stress and displacement fields in the vicinity of the

crack tip rather than from considering an energy balance for the elastic solid as a whole,

as Griffith suggested. Irwin also used the Westergaard stress function [3] to show that the

stresses and displacements near the crack tip of an isotropic linear elastic material in

mode-I plane stress could be described by a single parameter, K, that is related to the

energy release rate [4], i.e.,

G:K2/E, (1.1)

where E is the Young's modulus. For plane strain, E is replaced by E/(1 - v 2). This crack

tip characterizing parameter later became known as the stress intensity factor.

Rice [5] later defined a path-independent J-integral for two-dimensional crack

problems in linear and nonlinear elastic materials. As shown in Figure 1.1, J is the line

integral surrounding a two-dimensional crack tip and is defined as

J = (Wdx 2 - (Yijn j --ds) i,j = 1, 2 (1.2)
_X1

F

where /" is a curve surrounding the crack tip, W is the stress-work density, @ are

components of the stress tensor, nj is the j-th directional component of the unit normal

vector on the path F, and ds is an element of arc length along F. It was shown that the J-

integral is a more general type of energy release rate. For a linear elastic material, G = J.
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Therefore, the stress intensity factor K can be readily obtained, according to Eq.(1.1) and

the computational efficiency of the J-integral, as

K =452. (1.3)

The J-integral is effective for evaluating K in two-dimensional crack problems.

For three-dimensional problems, however, it is difficult to distinguish K at different x3

locations, assuming the line integral is performed on the xl-x2 plane. Thus an alternative

procedure needs to be developed to determine the distribution of K through the thickness.

Parks [6] employed the virtual crack extension method to determine d from elastic-plastic

finite element solutions. The method is based on an energy comparison of two slightly

different crack lengths and requires only one elastic-plastic finite element solution,

because the altered crack configuration is obtained by changing nodal positions. The

procedure is directly applicable to two-dimensional configurations but can be extended in

a straightforward manner to obtain arc-length-weighted average values of d along three-

dimensional crack fronts. The three-dimensional applications, however, have significant

loss of accuracy in the near-tip region where the values of field quantities (stresses,

strains, and displacements) are required to determine the point-wise energy release rate

along the crack front. Based on the virtual crack extension method, deLorenzi [7,8]

developed a finite element method that is more general to calculate the energy release

rate in two-dimensional and three-dimensional fracture problems and could include the

effects of body forces and traction loading on the crack faces.

Another investigation was made by Li et al. [9]. They proposed a formulation

which would convert area integrals to volume integrals in order to calculate point-wise

values of the energy release rate along a three-dimensional crack front. Shih, Nakamura

and co-workers [10,11] then developed a finite element formulation to calculate the

volume domain integral. About the same time, Nikishkov and Atluri [12,13] applied a

somewhat different approach but a similar numerical procedure, and named the

formulation "equivalent domain integral (EDI)" which would be used by subsequent

researchers [14-16]. All of those derivations involve the application of the divergence
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theoremandthe implementationof a spatialweightingfunctionthatis baseduponthe

virtual crackextensionmethod.

With the EDI method,apoint-wisevalueof J along a three-dimensional crack

front can be calculated, and therefore the value of K along the crack front can be obtained

from Eq.(1.3). Another advantage is that the EDI method transforms surface integrals in a

three-dimensional problem into integrals over a volume, or a domain (hence the name of

equivalent domain integral), without evaluation of the stress singularities directly on the

crack front.

The stress intensity factor alone is not enough to characterize the crack behavior

in some cases. Other fracture parameters may be needed to describe the crack behavior

more precisely. As Irwin [4] pointed out there is a mathematical expression for crack-tip

stress distributions in linear isotropic solids, Williams [22] showed that the expression is

in fact an infinite power series of r, where r is the distance from the crack tip. The power

series, in a concise form, can be written as

_(r,O) = Z Anr_l/2)n f)n)(O) ,
n=-i

i,j = 1, 2 (1.4)

where An are unknown constants which depend on the geometry and loading conditions,

and f)")(0) are the known angular distributions. The mode-I stress intensity factor is

included in the first term of Eq.(1.4) as

o-_ = lim KI f)-l_(o) (1.5)
r_0 _/2a'r

in which the stresses are singular at r = 0 and A 1 = K_/_--_. The leading term of the

series of Eq.(1.4) represents r -v2 singularity; the second term is a constant; the third and

higher-order terms are proportional to r(vz)n, n=1,2,3 .... Larsson and Carlsson [23] first

denoted this constant term as T, and later it became the so-called "elastic T-stress".

In addition to the stress intensity factor, the elastic T-stress provides another

parameter to identify the severity of stress and displacement fields near a crack. Larsson
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andCarlsson[23] showedthat the T-stress is necessary to modify the solution of the

stress state in a small-scale yielding crack problem in plane strain condition. Rice [24]

showed that T is in fact a constant stress parallel to the crack flank, and included it as a

second crack tip parameter to characterize suitably small plane strain yield zones. Several

methods have been used to practically determine the T-stress [25]. In addition to the

methods mentioned in [25], recently other methods were also used, such as the boundary

layer method and the displacement field method [26], as well as the stress difference

method [27]. Among those methods, the interaction integral method developed by

Nakamura and Parks [28] demonstrated highly computational effectiveness since it is

based on the EDI method and has the capability to compute the T-stress not only in an

isotropic material but also in an anisotropic material.

Under the NASA Advanced Composite Technology Program, Langley Research

Center (LaRC) has performed fracture toughness tests for various types of wing structure

specimens made from stitched warp-knit fabric composites. Variations of in-plane

geometry and crack length were evaluated from three kinds of specimen geometry [29]:

compact tension (CT) specimen with the crack aspect ratios 0.46 < a/w < 0.69 ; center-

cracked tension (CCT) specimen with 0.26 < 2a/w < 0.42 ; single-edge notched tension

(SENT) with 0.25 < a/w < 0.34.

Methods based on the equivalent domain integral and Betti's reciprocal theorem

were developed by Yuan and Yang [29] to extract the fracture parameters - critical stress

intensity factor and T-stress. With the limited experimental data, the results tend to show

that the critical mode-I stress intensity factor provides a satisfactory characterization for

engineering applications of fracture initiation in the composite of a given laminate

thickness, provided the failure is fiber-dominated and the crack growth follows in a self-

similar manner. In addition, the high constraint due to high tensile T-stress may be

expected to inhibit the crack extension in the same plane and promote the crack turning.

Recently, LaRC performed a mode-I test on a five-stringer panel manufactured
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usingthestitchedwarp-knitcompositematerial.Thecrack initially extendedin a self-

similar mannerand then turned parallel to the stiffener directionwhen the crack

approachedstiffeners(seeFigure1.2).In this dissertation,theeffectsof thegeometrical

attributeson the fracturebehavior of this panel are investigatedby using three-

dimensionalfinite elementanalysisandlinearelasticfracturemechanicsto analyzethe

composites.Due to the high computationalefficiency,the equivalentdomainintegral

methodis used to calculatethe through-thicknessKI stress intensity factor and the

interaction integral method is adopted to compute the through-thickness T-stress

components. The algorithms of the equivalent domain integral and interaction integral are

implemented into a single computer program, which reads a set of finite element

solutions from a given mesh as the input to determine the distributions of the fracture

parameters along the crack front. The composites are modeled as linear, anisotropic, and

homogeneous materials. For the purpose of verification and comparison, a similarly

cracked plate structure without stiffeners is also analyzed with the same composite

material properties as well as an isotropic material.

The derivation of the EDI method is reviewed in Chapter 2 by the approaches

mostly found in [15]. The derivation of the auxiliary fields necessary in the interaction

integral method for an anisotropic material is presented in Chapter 3. Chapter 4 shows the

procedure to determine the stress intensity factor and components of the T-stress from the

values of the equivalent domain integral and interaction integral. The finite element

models used in this research are described in Chapter 5; the associated results are

presented in Chapter 6. Finally, the summary and discussion is presented and suggestions

for future research are made in Chapter 7.
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2 Equivalent Domain Integral (EDI)

The derivation will assume a traction-free crack in a linear elastic material, with

the intention of determining the mode-I stress intensity factor KI through the thickness.

2.1 Mathematical Formulation

Let us consider a small cylindrical volume with radius e encompassing a segment

of crack front of length A such that both e and A approach zero, as shown in Figure 2.1. A

local coordinate system is defined so that the axes Xl and x2 are perpendicular to the crack

front, while Xl and x3 are lying on the crack plane. The volume is enclosed by five areas,

namely the outer surface A_, two end surfaces A_I and A_2, the top crack surface A_.t, and

the bottom crack surface A_+.

The local J-integral over the outer surface A_ of the tube is defined as [30]

J = lim 1 f (Wnl _ aiJ __
o A a aXl nj)dA.

i,j : 1, 2, 3 (2.1)

t"

In Eq.(2.1), W is the stress-work density, defined as ;v=Jo- de , where @ are

components of the stress tensor, and e# are components of the strain tensor, ui are

components of the displacement vector; nj is the j-th directional component of the unit

normal vector on the surface A_. Since this research will be limited only to linear elastic

materials, the stress-work density is simplified as W=(oS_)/2. Note that

displacements, strains, stresses are expressed in the local crack front coordinate system.

For the purpose of simplicity in later derivations, let

Q = wH 1 --O'vj -_-X1Hj. (2.2)

Then Eq.(2.2) can be rewritten in terms of boundaries shown in Figure 2.1 to complete a
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surfaceintegralas

J=liml[fQdA+A+oA ,a I QdA+ JQdA].

E'--->0 kAe A_.I +Ae2 A_ct+A_c b J

(2.3)

The evaluation of surface integrals in Eq.(2.3) is tedious and could lead to errors because

singular terms on the crack front are included for numerical integration. Therefore, a

modified form of the surface integrals is desirable, and this modified form would be the

equivalent domain integral.

Now consider two tubular surfaces, A and A_, as shown in Figure 2.2. A is an

arbitrary surface enclosing A_ on which the J-integral is calculated. A1 and A2 are end

surfaces connecting A and A_. (A-A_)ct and (Ae-A)cb denote the top and bottom crack

surfaces between A and A_, respectively. An enclosed volume (V- V_) is surrounded by all

of these surfaces, which are called collectively As, defined as

A s = A-A_ +(A-A_)ct +(A_ -A)c b +A 1 +A 2. (2.4)

Based on the virtual crack extension theory, deLorenzi [8] proposed the concept

of virtual node shift that forms the definition of a spatial weighting function, which is

called s-function by some researchers [12-16,30]. We will adopt this name throughout

this dissertation and use the symbol s to represent this spatial weighting function.

According to the configuration shown in Figure 2.2, an arbitrary but continuous s-

function is defined between A and A_ so that the function has the following properties:

s(xl, x2 , x 3) = 0 on A, A_I and A_2, A1 and A2; (2.5a)

s(xl,x 2,x3) = s(x3) onA_. (2.5b)

In order to complete the surface integrals over As, the first integral in Eq.(2.3) can

be rewritten as an integral over the closed surface As and an integral over the physical

boundaries (A - A_)_t + (A_ - A)_ b . And with the use of Eq.(2.5), Eq.(2.3) becomes
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Ax ( A- A_ )ct +( A_- A )cb A,.I + A_2 A_ct + A_cb

In Eq.(2.6)fis the area under the s-function curve on surface A, and is defined as

f = Is(x3)dx3 .

A

The s-function is equal to zero on both end surfaces of A_I

QsdA = 0 and Eq.(2.6) remains as
Agl+Ag2

J _ 7 - Ax (A_A_)ct+(A_A)cb Aa:t+A_c b

(2.6)

(2.7)

and A_2; therefore,

(2.8)

In Eq.(2.8) the negative sign of the first integral, which is over an enclosed

domain, comes from the opposite direction of the outer normal vector to the surface A_ of

the volume (V-V_) in comparison with the normal vector to the surface A_ in Figure 2.1.

The other integrals in Eq.(2.8) are actually on the crack surfaces. Therefore, we may

separate integrals in Eq.(2.8) into a "domain" integral and a "crack face" integral,

denoted as

J = f [(J)domain + (J) .... kface], (2.9)

(d)domain = -- _ QsdA, (2.1 O)where

As

and (J)or_ok f_oe= [QsdA+ [QsdA=[Q F  k   osdA. (2.11)

(A-A_.)_t+(A_.-A)_b A_.d+A_. b

By recalling Eq.(2.2), Eq.(2.10) can be written as

(J)doiIlaii1 :--I [WSnlA21 -(O'ij_UisXlt_j]dA._xl) ] (2.12)

The use of divergence theorem on Eq.(2.12) gives the following result:
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Sincetheanalysisis limited to linearelasticmaterials,it canbe shownthat thesecond

integralin Eq.(2.13)isequalto zero[13].ThusEq.(2.13)issimplifiedas

=- f (W Os-r_ Oui Os _V. (2.14)
(J)dom H,

On the crack surfaces, the first and third directional components of the unit

normal vector n are equal to zero (n 1 = n 3 = 0), according to the local coordinate system.

The second component of n has the properties of n z = +1 on the bottom face and

n z = -1 on the top face. Upon substituting these conditions into Eq.(2.2), we have

/ 3Ul 3U2 3U3 /
Qcrack_ace = W/71 - °12 --t72 "}- 022 --/72 "}- 032 --/72 • (2.15)

3xl 3xl 3xl

Since o22 = o32 = 0 on the crack surfaces, Eq.(2.15) is then reduced to

3u 1
Qcrackmce = -¢12 --/72" (2.16)

Ox1

For a traction-free crack surface, o12 = 0. Thus the value of Q in Eq.(2.16) is equal to

zero, and all integrals in Eq.(2.1 1) vanish.

Therefore, for a traction-free crack in a linear elastic material, the equivalent

domain integral for the determination of KI, in terms of displacements, strains, and

stresses, can be conveniently expressed as

(2.17)

To make a computable expression of Eq.(2.17), some numerical implementation needs to

be defined.
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2.2 Numerical Implementation

The 20-node isoparametric brick-shaped elements are frequently used in the three-

dimensional finite element analysis of linear elastic crack problems. The typical finite

element mesh around the crack front is a fan-type mesh, as shown in Figure 2.3. The

shaded area indicates a domain over which the equivalent domain integral is calculated.

All elements in and beyond this domain are 20-node elements. The wedge-shaped

elements attached on the crack front, however, contain only 15 nodes for each element.

The J-integral is the sum of the domain integral contributed by each element in

the designated domain, e.g., the shaded area in Figure 2.3. That is,

//e

(J)domain = Z(J)i, (2.18)

i=1

where (J)i is the volume integral over the i-th element, and ne is the number of elements

enclosed in the domain.

In finite element modeling, the displacements are expressed by shape functions

u k = ZNj(uk)j, k = 1, 2, 3 (2.19)
j=l

where Nj = Nj(_,rl,_) is the element shape function for a three-dimensional solid

element, and _, r/, _"are the element's local coordinates that range between +1. (uk) j is

the displacement component at the j-th node where j is the local node number within an

element. Then for the volume integral of a single element, Eq.(2.17) can be written as

1 fl f (wos, o.j Os )]et[J}l_dr/d _ (2.20)(J1)i = -7 :-_:-_ -1[ _Xl- ajk _x__xk

For an element with 2×2×2 Gaussian integration points, Eq.(2.20) can be modified in the

form of numerical integration as

and nodal displacements:

20
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222(J1)i = - W_x ' -- UX1 _S _W_Wpdet . (2.21)
a Lm=l n=l p=l _ 1 / -Ji

In Eq.(2.21), W is the stress-work density, u'_ is the vector of displacement derivatives,

(y is the stress tensor, s' is the derivatives of the s-function, and det[J] denotes the

determinant of the Jacobian matrix. Wm, W,,, and wp are integration weights, and they all

have the values of unity for 2x2x2 reduced integration [31 ].

Eq.(2.21) is the equation to be used for computation; therefore, the numerical

implementation of each item in this equation needs to be explicitly expressed, as shown

in the following sections. Once all items in Eq.(2.21) can be readily calculated, the J-

integral over the domain can be evaluated from Eq.(2.18).

2.2.1 The Jacobian Matrix

The Jacobian matrix is defined by

-aN 1 aN 2 ON 3 -

a_ a_ a_
j= 3xl 3x2 3x3

at/ at/ at/
3X 1 aN 2 aN 3

a¢ a¢ a¢

Each component of the matrix, according to the finite element theory, is defined as

3x k _2, 3N;

3xk _ 3N;

Or/- ___-_(x_)j,

3x k _-_ ON;

-  -57- ( ) ,

where (xk);

k= 1,2,3

k= 1,2,3

k= 1,2,3

is the local coordinate component at thej-th node within an element.

(2.22)

(2.23a)

(2.23b)

(2.23c)
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2.2.2 The Stress Tensor and Stress-Work Density

The stress tensor (y of a linear elastic material is a 3×3 symmetric matrix shown as

0"11 0"12 O-13 ]
_: 0-12 0-22 _3/. (2.24)

L0-13 0-23 0-33J

The stress-work density of the linear elastic material is (o _e_)/2, or

l--" (0.11Cll -t- 0-22C22 -t- 0-33C33)-1- 0-12C12 -t- 0-23C23 -t- 0-13C13 .W
z

(2.25)

Note that o_j and eo are the stress and strain components from the finite element solutions

output on the integration points.

2.2.3 The Derivatives of the s-Function

s' is the vector containing derivatives of the s-function with respect to the local

coordinate system and is expressed as

iT, as as as

S : 0X2 0X3 .

(2.26)

To evaluate Eq.(2.26), the s-function must be defined first. Since the s-function is

arbitrary and satisfies Eq.(2.5), it can be conveniently defined by the sums of the element

shape functions as

20

s(_'rl' _) = E N js j . (2.27)
j=l

For the 20-node brick-shaped element shown in Figure 2.4, the s-function is

completely defined by specifying s _1°)= s _14)= 1 and zero on all other nodes in order to

satisfy Eq.(2.5). This definition yields a quadratic s-function over a single element. With

the definition, Eq.(2.7) also can be evaluated and hencef = (2/3)A where A is the length

of the domain segment [30].
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It is clearthatthes-function is a function of the element coordinate system (_, r/,

_), rather than the crack front coordinate system (xl, x2, X3). Thus s' should be expressed

in terms of (_, r/, 5) before it can be evaluated. This can be done by the chain rule, as

shown in the following equation:

3s

= j-1 Os

Or/
3s

(2.28)

,1-1 is the inverse Jacobian matrix containing the following components:

J--] =

3xl 3xl 3xl
a,j

3x2 3x2 3x2

a,j
aX 3 aX 3 aX 3

(2.29)

The derivatives of the s-function with respect to the element coordinate system, i.e. --

as and as in Eq.(2.28), can be evaluated in the same manner as Eq.(2.23).
a,j

2.2.4 The Derivatives of the Displacements

pT

Ux 1 is the vector of displacement derivatives and can be expressed as

aU2 aU3.].

ax_ ax_ J
(2.30)

The components in Eq.(2.30) are the derivatives of the displacements with respect to the

local coordinate system. Similar to the derivatives of the s-function, they should be

evaluated in terms of the element coordinate system (_, r/, _. With the use of the chain

rule on Eq.(2.19), each component of Eq.(2.30) can be obtained by
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0N; Or/ (2.31)0ux _ DN; D_ _-____ i- -- (u k);. k = 1, 2, 3

Dx_ J=_'_a_ Dx_ Dr/ DXl DC

In Eq.(2.31), D_ Dr/ and D_- -- are the components of the first row of the inverse
DX 1 ' DX 1 DX 1

DNx
DNj DNx and _ are the derivatives of the shape

Jacobian matrix of Eq.(2.29); -D_ ' Dr/ D_"

functions that can be readily computed.
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A_l

\
X2

Xa crack_kont

A

A _cb

Figure 2.1 A small cylindrical volume around a segment of crack front, with the local

coordinate system shown.

A1

A g-A) cb

Figure 2.2 A domain enclosing a segment of crack front.
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X3

Figure 2.3

Figure 2.4

The schematic finite element mesh near a segment of the crack f"ont.

i 20

181 i I I

....... crackfi'ont

A 20-node element with the associated s_functions.
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3 Interaction Integral

The interaction integral is necessary for extracting the elastic T-stress from an

existing finite element solution. It is based upon the formulation of the EDI method as

well as a superimposed auxiliary stress field. Kfouri [32] gave the auxiliary stress field

that is the analytical solution corresponding to a point force applied to a crack tip and

parallel to the crack surface under plane strain in isotropic solids. For a three-dimensional

crack, the point force becomes a uniform line load that is applied along the crack front, as

shown in Figure 3. l(a). This stress field is a function of r, the distance from the crack

front, and O, the angle from xl axis toward x2 axis; but it is independent of the crack front

location x3.

Nakamura and Parks [28] applied the auxiliary stress field with the interaction

integral and successfully calculated the T-stress distribution along the three-dimensional

crack front. The auxiliary stress field, however, is valid only for isotropic materials. For

anisotropic materials, the corresponding auxiliary fields have been derived using Stroh

formalism [34].

Similar to Eq.(2.17) of the equivalent domain integral, the interaction integral for

mode-I loading in a given domain may be expressed as

+lcr_ -- _ , i,j = 1, 2, 3 (3.1)

a a a

where o-_, e_, and u i are the components of the auxiliary stress, strain, and

displacement fields, respectively. For the purpose of numerical integration of each

individual element in a domain, Eq.(3.1) can be written similarly to Eq.(2.21) as

(/])i =flm_l _1 _ 1 --_jkl_jk-_l"_-_l )Xl_"_-_lxl _ wmWnWpdet • (3.2)

i

In Eq.(3.2), _a and u a denote the stress tensor and displacement vector of the auxiliary
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a

fields, respectively, ejk are components of the auxiliary strain tensor. These entities are

expressed in terms of the components of the associated tensor or vector as follows:

o-23|; (3.3)

L O"13 0-23 0-33]

.... 2(0- _ _ _) (3 4)0-jkEjk = 0-11Ell -t- 0-22E22 -t- 0-33E33 -t- 12E12 -t- 0-23E23 -t- 0-13E13 ;

(l[lg)xl La, l a., l (3.5)

Quantifies of Eq.(3.3) and Eq.(3.4) can be obtained by straightforward

substitution of auxiliary stress and strain fields. Components in Eq.(3.5) can be computed

similarly to Eq.(2.31) as

OUak__(.ONJ O_ ONj 01] ONj O;']u a{ "_

-_ _----- )_k], k = 1,2,3 (3.6)

where u_ are components of the auxiliary displacement vector. All of the other items not

associated with the auxiliary fields are calculated exactly in the same way as the

equivalent domain integral is.

Since the auxiliary strain and displacement fields are derived from the auxiliary

stress field which is a function of r and O, both are functions of r and 0 as well. All terms

in Eq.(3.2), however, should be evaluated with respect to the local coordinates (xb x2, X3).

Therefore, the auxiliary field calculation must be done by converting the Cartesian

coordinates of nodes or integration points to the polar coordinates before substituting

them into the auxiliary field formulation. The computation of the auxiliary displacement

field is straightforward because it needs only substitution of all 20 nodes' coordinates

within an element. The auxiliary stresses and strains will need the coordinates of the 8

integration points. The location of these integration points with respect to the element

coordinate system is illustrated in Figure 3.2.
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Let us recall the Williams expansionof Eq.(1.4)which canbe generalizedto

three-dimensionalproblems.It is assumedthat the asymptoticexpansionof the stress

fieldnearthecrackfrontlocationundergeneralloadingconditionscanbeexpressedas
3(III) _

=_-' a:_ t<_)gO_+_j+o(1) i,j=1,2,3 (3.7)z_, 24E-- j 
n=l(I) * --""

where ki, kii, and kiii are local stress intensity factors, (")f) (0) are angular distributions for

the crack-tip field given by the two-dimensional deformation of anisotropic elasticity

theory, and o(1) represents other higher order terms. T_ are the non-singular T-stresses,

which have three distinct components, namely

]1
o o. (3.8)
o r33

Tll is obviously the stress component acting parallel to the crack plane [24] and

can be determined by the interaction integral with an imposed uniform line load ji as

shown in Figure 3.1(a). Similarly T13 can be determined by using a different set of

auxiliary fields. Instead of the line load perpendicular to the crack front and the xz-x3

plane, a constant forcej_ in x3-direction and through the full length of crack front should

be imposed. This configuration, as shown in Figure 3. l(b), will yield an auxiliary stress

field necessary to extract T13. T33 is a combination of Tll and T13 and can be readily

obtained after the other two T-stresses are determined (see Chapter 4).

In the following sections, the derivations of both types of auxiliary fields are

presented in order to determine all of the T-stress components.

3.1 Auxiliary Fields for Tll

In this dissertation, we will be concerned with the composite plate structures,

which usually have at least one plane of symmetry in materials. The convention of

orientation for a composite plate is that the plate is on the xl-x2 plane while the x3 is the
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direction out of plane [34]. Since most composite plates have at least one symmetry plane

at x3=0, we will limit the derivation under this restriction. This kind of material is called

the monoclinic material with the plane of symmetry at x3=0, or simply the monoclinic

material about x3=0.

The generalized Hooke's law states the stress-strain relation in contracted notation

as

G¢ = C_ _ ,

where c= [0_ 1 0_ 2 0_3 0_4 0_5 0_6Y _ [0_11 0_22 0_33 0_23 0_13 0_12Y

and c ¢ =[e 1 e 2 _3 E4 E5 E6Y =JEll E22 E33 2E23 2E13 2E12Y.

(3.9)

(3.10)

(3.11)

C is a 6×6 matrix, and is called the stiffness matrix in which the components C_ are

material properties. A monoclinic material about X3=0 has the following form of the

stiffness matrix:

C

-Cll C12 C13 0 0 C16-

C12 C22 (723 0 0 (726

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

(3.12)

The inverse of the stress-strain relation defines the compliance matrix s, as

_:_ = s_ _ , (3.13)

where s is the inverse of C. Thus the compliance matrix of a monoclinic material about

X3=0 has the form of

$=C -1

-Sll S12 S13 0 0 S16-

S12 $22 $23 0 0 $26

S13 $23 $33 0 0 $36

0 0 0 $44 $45 0

0 0 0 $45 $55 0

S16 $26 $36 0 0 $66

(3.14)

As stated earlier, the auxiliary fields for Tll are independent of X3. This implies it

is under the condition of two-dimensional deformation for which e3=0. By ignoring the
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equationfor 0-3 in Eq.(3.9), the stress-strain relation of the monoclinic material can be

written as

[0-1 0-2 0-6 0-4 0-5]f =C°[E1 E2 E6 E4 E5_, (3.15)

where C o is the reduced stiffness matrix, shown as

Cll C12 C16 0 0 ]

C12 C22 _6 0 0

C O= C16 C26 C66 0 0 .

[00 0 0 C44C45
0 0 C45 C55

(3.16)

The inverse of Eq.(3.16) gives the definition of the reduced compliance matrix s °, as

r i]
Xll X12 X16 0 0

s° (co)_1 | 12 0
= = 1S16 $26 $66 0 .

[o° 0 0 $44 $45 /

0 0 $45 $55 J

(3.17)

The components of so can be also obtained by solving for o-3 in the third equation

of Eq.(3.13) that will yield

6

'Z0-3 = 0-33 -- S3fl0-fl" fi :;e3 (3.1 8)
N33 fl=l

Substituting Eq.(3.18) into the other five equations of Eq.(3.13) will have

/ ___
Sij = Sij Si3S3j i,j = 1, 2, 4, 5, 6 (3.19)

$33

According to Stroh formalism for two-dimensional deformations of an anisotropic

elastic body [35], the characteristic equations have the reduced compliance as

coefficients:

/ / /

S_l,/./4 -- 2S_6,/./3 + (2S12 + S66)/2 2 -- 2S26/2 + S22 ---- 0 ; (3.20a)

/ /
S_5/2 2 -- 2S45/2 + $44 = 0. (3.20b)

The solutions to Eq.(3.20) are the eigenvalues of elastic constants,/2_ (_= 1, 2, 3), where

/21,/22, /21, and B2 are roots of Eq.(3.20a), and /23, B-3 are roots of Eq.(3.20b)./2_ are
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complex numbers, and _-_ are the conjugates of/.t_.

Under the uniform line loadji shown in Figure 3.1(a), the auxiliary stresses are

_: r -1 In Stroh formalism, the real form solution for theinversely proportion to r, or o-_

displacement ua and the stress function 0a due to the point forces can be written as

2u_=-[_I+ S(0)]L-lf, (3.21a)

20 _ = L(O)L-lf , (3.21b)

where S and L are Barnette-Lothe tensors, S(0) and L(O) are their associate tensors, f is

the vector of the line load per unit thickness, and I is the 3×3 identity matrix. These items

are defined as follows:

f=[f 00]T; (3.22)

S(0) = 2 Re{A(ln(cos 0 +/.t, sin 0))B T}; (3.23a)
JZ

L(O) = _2 Re{B(ln(cos 0 +/.t, sin 0))B T}; (3.23b)
JZ

L -1 ,[Zz_ z 2 0
= Sll e 0 (3.24)

0 -1

The definitions of the terms in Eq.(3.23) and Eq.(3.24) are given as follows.

For the purpose of simplicity, let

diagonal matrix, thus

(ln(cos0 +/a_sin0)) L 0[lng'l 0 0 J
=|0 lng- 2 0 .

0 In _3

g_=cos6+/.z_sir_. In Eq.(3.23), ( ) implies a

A and B are 3×3 complex matrices containing Stroh eigenvectors and are defined as

(3.25)
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[kiP1 kff)2

A=[k_l k2q20 0 ]0, and
k3(s_5 - s44//-/3)

-kl/21 0 ]
B= k 1 _ 0 ,

0 0 - k 3

where pl, P2, ql, q2 can be obtained from

/ 2 / / / / / /p_ = Sll/./c¢ - s16/./c¢ --[- s12 and qa = Sl2/Ua - s26 '[- s22 g/-/a • O(= 1, 2

kl, k2, k3 are normalization factors satisfying the following relations:

2k12 (ql-/'/lPl) = 1; 2k2 (q2 -/'/2P2) = 1; 2k2(s_4/_/3 - s;5 ) = 1.

The components of L q in Eq.(3.24) are defined by the following relations:

/'ll "1- IU2 = Yl + zli ;

/21/22 = Y2 + z2i ;

e = YlZ2 - Y2 Zl ;

t t t t )-1/2m = (S44S55 --S45S45

(3.26a)

(3.26b)

(3.27)

(3.28)

(3.29a)

(3.29b)

(3.29c)

(3.29d)

Upon substitution of Eq.(3.22) through Eq.(3.24),

Eq.(3.21b) can be obtained as

0 a -- flSll Re ,

K

where 01 = Zl (k2/-/2 lng'i -t- k2,H 2 In g'2)- z 2 (k12,Hi lng" 1 -t- k2,H2 lng 2 )

and 02 =-% (k12/-zilng'i + k22/-/2 In g'2)+ z2 (kl 2 lng'i + k22 In g'2).

the stress function of

(3.30)

(3.31a)

(3.31b)

To determine the auxiliary stress field from the stress function, let tr be the

traction vector on a cylindrical surface of r = constant which can be obtained as [33]

tr-- tO6 '
(3.32)
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,or,r %,
where_,_; zi(k_._i+_._2)-z2(k_.i_i +_.2_:)

and t_, =-z1(k12//1_1 + k22//2_2)+ z2 (k12_1 +_2).

In Eq.(3.34) _ is defined as

@ - sin 8 +/1_ cos 8f_(O) = lng_ = cosO+/.z_sinO

Then the stresses in the cylindrical coordinate system are

o_ = [cos 6 sin 6 0]t_ ;

o.=[0 0 1}_;

000 =OrO =003 =0.

(3.33)

(3.34a)

(3.34b)

_= 1,2,3 (3.35)

(3.36a)

(3.36b)

(3.36c)

0.r3 is found to be equal to zero after substituting Eq.(3.33) into Eq.(3.36b). Substitution

of Eq.(3.33) into Eq.(3.36a) also gives 0.rr, which is a function oft and O, as

O'rr = fllSl*l Re{_ 1 cosO + t_, sinO}. (3.37)
2Z/"

It should be noted that the auxiliary fields in the calculation of the interaction

integral of Eq.(3.1) are all in the Cartesian coordinate system. Hence the auxiliary

stresses 0._ must be obtained by applying coordinate transformation on Eq.(3.36). The

results, which will be able to be implemented into the numerical computing procedure,

are given as follows:

flS_l COS 2 0
Re{_1cosO + t_,sin 0}; (3.38a)

a

O"11 --
5g/"

/

a flSll sin20 _ }0-22 -- Re _1cosO + t_, sinO ; (3.38b)
5g/"

/

f1s11sin6c°s6 Rear 1 COS0 + lr, sin0}; (3.38C)0-12
7gr

a a

0-13 = 0-23 = 0. (3.38d)
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0-33 can be obtained by substitution of Eq.(3.38) into Eq.(3.18), which yields

p

a fls11(s13c°s20+s23sin20)Re{q cosO +t_, sinO}.
0-33

7"/7FS 3 3

(3.38e)

Once the auxiliary stress field is available, the auxiliary strain field can be readily

obtained from the inverse of the stress-strain relation of Eq.(3.13).

The auxiliary displacement field is readily available from Eq.(3.21a) which, after

a series of substitution of Eq.(3.22) through Eq.(3.24), will yield u 3 = 0 and non-zero

a a

items of u 1 and u 2 as

{u?[_ fls_l({Zl}lnr+2Re_ZlSll+z2S12}l (3.39)u 2 ] 21r z2 [zlS21 + z2S22 '

where $11, $21, $12, and $22 are components of S(O) and are defined as

$11 = -k_lp 11ng'l - k_fl2 P2 In g'2 ; (3.40a)

2
$12 = k_Pl lng'l + _P2 In g'2, (3.40b)

$21 = -k( _lqllngl - _2q21ng'2 ; (3.40c)

$22 = k(qllngl + k_q21ng2. (3.40d)

Without loss of generality, the magnitude of the line load may be chosen as ji=l

as f is arbitrary. This assumption, as well as the information on material properties and

nodal coordinates, will enable the calculation of the auxiliary fields necessary for the

evaluation of the interaction integral, which in turn will determine Tll.

The auxiliary stress field for Tll in an isotropic material was given by Nakamura

and Parks [28] as

0-11 COS3 "_ =-f----_ O,
7gF

0-22 = - cos 0 sin 2 0 ;
?Z/"

(3.41a)

(3.41b)
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/__1
O-12= -- COS 2 0 sin 0 ; (3.41c)

2IF

0-33 = -- -- V COS O, (3.4 1 d)
2IF

a a

0-13 = 0-23 = 0. (3.41e)

It can be shown from strain-displacement relations that the auxiliary displacement field is

_ (1-fE)f[lnr Sin20 ] .Ul- +

(1 +v)f 1 [(1 2v)O-sinOcosO];
//12 --

2sag

(3.42a)

(3.42b)

a

//13 = 0. (3.42c)

3.2 Auxiliary Fields for/'13

The approach to determine the auxiliary fields for T13 is similar to that of Tll,

except the line loadji is replaced by a constant force j_ in the xs-direction, as shown in

Figure 3. l(b). This configuration will change the line load vector f in Eq.(3.22) as

f=[0 0 f3] T, (3.43)

which will yield a different stress function as

_ } (3.44)

fs
¢_ - 27n Re[k s2lng. s "

By applying a similar derivation following Eq.(3.32) and Eq.(3.36), the auxiliary stresses

in the polar coordinate system can be obtained as

0-r3 = f3 ee_2_3}, (3.45a)
;gmr

Ooo = Oro = Oo3 = or_ = 0. (3.45b)

Note that _-_3 is obtained through the definition of Eq.(3.35).

The transformation of stresses from r-Oplane to xl-x2 plane gives the results that
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a a a

O"11 , O-12 , and 0-22 all are equal to zero because Ooo = Orr = Oro = 0. The transformation

of 0-r3, and 0-03is conducted by the following relation [36]:

0-13 _ = [cosO --sine] _0-r3_0-231 [sinO cosO J [0-03J"
(3.46)

This operation yields the non-zero auxiliary stress components

f3 COS0 Re{_2_ 3], (3.47a)0-13 --

][mF

f3 sin 6 Re f,zn31._73j0-23 -- (3.47b)
Jzmr

a a

Then 0-33 can be obtained by the use of Eq.(3.18) that also shows 0-33 = 0. This operation

assumes a monoclinic material about x3=0 by using its compliance components shown in

Eq.(3.14).

The auxiliary strain field is also readily obtained from the inverse of the stress-

strain relation of Eq.(3.13). And the auxiliary displacement field is available from

Eq.(3.21a) as well. But with a different f, both u I and u 2 will be equal to zero while only

a

u 3 is the non-zero displacement as

f3 (lnr + Re_ng-3} ). (3.48)I'/3 --
2_zm

The magnitude of the constant force may also be chosen as j_=l because f is

arbitrary. Hence the auxiliary fields can be calculated, and therefore the T13 for a

monoclinic material about x3=0 will be determined.

For an isotropic material, the auxiliary fields may be obtained by applying the

material properties on the stiffness matrix of Eq.(3.12). A similar derivation will yield

0-13-- f3 COS6

2_zr ' (3.49a)

a f3 sin 6
0-23 -- 2_zr ' (3.49b)
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a a a a .

0"11 = 0"22 = 0"33 = 0"12 = 0

u3- fgO+V)ln r.
xE

(3.49c)

(3.50)



31

x2mr

crackJmnt / _ -'_
X3

Y

1

Figure 3.1 Auxiliary line load on a three-dimensional crack." (a) uniform forces fl

normal to crack front; (b) uniform forces f3 parallel to crack front.
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Figure 3.2 Locations of the integration points inside an element.
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4 Stress Intensity Factor and T-Stress

The formulations regarding the equivalent domain integral and the interaction

integral are implemented into a FORTRAN computer program, which uses the finite

element solutions computed from another ANSYS program as the input. Once the

equivalent domain integral and the interaction integral are evaluated, the stress intensity

factor and T-stresses can be determined. In the following sections, formulation to

determine both parameters will be shown in terms of those integral quantities and

appropriate material properties. These formulations can be easily implemented into the

FORTRAN program as well. The full contents of the ANSYS and FORTRAN programs

are provided in the Appendices.

4.1 Stress Intensity Factor

For an anisotropic cracked solid, the energy release rate G is related to the stress

intensity factor through [29,33,37]

G =lkTL-lk, (4.1)
2

where k T = [kH k_ kin] are stress intensity factors and L -1 is the inverse of one of the

Barnett-Lothe tensors as shown in Eq.(3.24). In elastic materials, the energy release rate

G is equal to the value of J-integral. For a pure mode-I crack in an elastic material, kII =

kill = 0, and Eq.(4.1) will reduce to

/

S11e

J1 (x3) = _- k_ (x 3), (4.2)

where x3 is the crack front location defined in Section 2.1, and Jffx3) is value of the

equivalent domain integral, as defined in Eq.(2.17), on this location. Therefore the local

stress intensity factor ki(x3) can be determined as

kI (X3) :'t _" (4.3)

_1 S11e
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For an isotropic material, L -1 has the form of

 120v2,[ 00]- 1 (4.4)E 1° "
01--

The Eq.(4.3) will become

_ [EJI(X3)
ki(x3)-._ __--_ ,

which is the plane strain condition as shown in Eq.(1.3).

(4.5)

4.2 T-Stress

The T-stress, in general, includes three components, namely Tll, T13 and T33, as

shown in Eq.(3.8). Tll and T13 should be determined from the evaluation of interaction

integrals, while T33 can be readily obtained after Tll and T13 are computed.

Let /(1) and /(2) be the values of interaction integral of Eq.(3.1) when the

superposed uniform load is ji andj_, respectively. For an anisotropic material, it can be

shown that the following relation between T-Stress and interaction integral exists [37]:

/ [I(1) (x3) '13 ]

[Nil Si5]{Tll}:) _ -T13 _33 _33 (x3) (4.6)
LS15 s55 ] I(2) (X3)

73
where /333(X3) is the crack front extension strain at a given crack front location x3./(1)(x3)

and/(2)(x3) are the interaction integrals on the domain at x3 due to ji andj_, respectively.

Then Tll and T13 at the same crack front location may be expressed as

[I(1)(X3) S13 ]

, , -1 ' _11 -- _ E33(X3)
JTll (x3)_ : [Sll s15] J 1 33 [

[Tla(x3)] Ls15 s55J ] /(2_)(x3) /" (4.7)

[ f3 ]

The extension strain e33(x3) can be determined independently from finite element results.
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t

For a monoclinic material about X3=0, S15 = 0. Sinceji andj_ are arbitrary, they

may be chosen as f_ = f3 = 1 without loss of generality. Therefore for this kind of

material, at any given crack front location x3, Tll and T13 can be determined solely by/(1)

and/(2), respectively. Eq.(4.7) then can be de-coupled as

Tll(X3) = @[I(1)(x3)- s13 E'33(x3)];Sll L $33
(4.8a)

T13 (x3) _ 1(2) (x3._______) (4.8b)
p

$55

In modeling three-dimensional cracks along a given location x3, the T33

component is also induced by the extension strain E'33(X3) along the crack front. Thus T33

can be evaluated as [37]

T33(X3 ) = 1 [_33(X3) _ (s13T11 -[- $35T13)]" (4.8c)

$33

For isotropic materials,

v 1

S13 E' s33 = E-' s35 = 0 ; Sll

Then Eq.(4.8) reduces to

E + v 33(x3)];
Tll(X3) - 1_v2

 3(x3)- f I
2(1 +v) (x3);

T33(x3) = E_33(x3) -[-_2Tll(X3) .

1-V 2 2(1+V)
' - (4.9), $55

E E

(4.10a)

(4.10b)

(4.10c)

Note that Eq.(4.10a) and Eq.(4.10c) have been derived by Nakamura and Parks [28].



35

5 Models

5.1 Plates

Due to loading and geometry symmetry, one-eighth of a through-thickness center-

cracked plate is modeled by finite elements. The entire plate, shown in Figure 5.1, has a

total length of 21 = 80in., a total width of 2w= 40in., and a total thickness of

2t = 0.33 in. The origin of the global Cartesian coordinate system is located at the center

of the plate. The X-axis is parallel to the crack flank surfaces and the Y-axis is orthogonal

to X and to the crack flank. The Z-axis is normal to the X-Y plane. A uniform

displacement u_ equivalent to a strain value of 0.1% is prescribed on the far ends at

Y = + 1. For the finite element model, symmetric boundary conditions are imposed on the

planes of X = 0, Y = 0 (a < X < w ), and Z = 0. The displacement loading is also applied

on the surface at Y = 1. A local coordinate system is defined on the crack front at the

centerline of thickness. The xl-axis is perpendicular to the crack front and coincident with

the global X-axis. The xz-axis is also normal to the crack front but parallel to the global Y-

axis, and the x3-axis lies on the crack front and is parallel to global Z-axis as well, as

shown in Figure 5.2.

The finite element model is generated and solved by ANSYS, a general-purpose

finite element code. A typical mesh of the finite element model is shown in Figure 5.3. It

includes large brick-shaped elements far away from the crack front and small fan-shaped

elements near the crack front. The elements attached on the crack front are 15-node

wedge-shaped elements. The radial size of these elements, e0, is always equal to or less

than 1% of the characteristic length lc, defined as 1c = min[a, w - a, t], i.e. e0 < 0.01 × lc,

as shown in Figure 5.4. Other than these wedge-shaped elements, the crack front region

consists of 12 rings, each of which contains 12 elements. The width of each ring

(equivalent to the radial element size) increases as the ring moves farther away from the
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cracktip. Thelargestradialelementsizeat Ring#12is 26 timesthesmallestoneat Ring

#1, andits outerradiusis kept at 100 timesof e0, as shown in Figure 5.5. The half

thickness is divided into 20 element layers, in which are 5 small layers near the free

surface, 8 large layers near the centerline, and 7 mid-size layers in between. The three

element sizes of each of these layers, in terms of the half thickness t, are 0.03t, 0.05t, and

0.0625t, respectively. Figure 5.6 shows the mesh refinement and element sizes near the

crack front and through the thickness. The overall mesh contains 5640 elements and

25183 nodes with 75549 degrees of freedom. This mesh result showed appropriate

convergence on the calculation of the fracture parameters.

5.2 Stiffened Panels

A stiffened panel based on the dimensions of the plate mentioned in Section 5.1

has five stiffeners attached longitudinally on one side of the plate. This structure is

designed by Boeing for the all-composite wing skin in a commercial aircraft [29]. A

center crack of length 2a cuts through the central stiffener and the panel. Figure 5.7

shows the configuration of the panel as well as the detail dimensions of the stiffener. Due

to the presence of stiffeners and geometry symmetry, one-fourth of the entire panel is

modeled by finite elements, as shown in Figure 5.8. Both of the global and local

Cartesian coordinate systems are defined in the same way they are defined in a plate.

Hence the symmetric boundary conditions are imposed on the planes of X = 0 and Y = 0

(a < X < w). To prevent a free-body motion in Z-direction, a constraint in the Z-

direction is also imposed on the node at (0, 0, -t), i.e. the point at the center of the panel's

back side. Here t is defined as one half of the panel thickness that is not including the

stiffener portion. A uniform displacement u_ equivalent to a strain value of 0.1% is

prescribed on the far end at Y = 1.

Since the crack is not expected to propagate across the "second stiffeners", which

are the stiffeners next to the central one, the crack front will only extend to near the edge

of the second stiffeners. Under this assumption, the definition of the crack aspect ratio
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will be differentfrom what is definedin unstiffenedplates.Insteadof a/w, the crack

aspect ratio in stiffened panels is defined as a '/w: Here a' is the crack length calculated

from the edge of the central stiffener to the crack front, and w' is the distance between

edges of two adjacent stiffeners. Figure 5.9 shows an enlarged region along the crack

surface with the designation of a, a, and w:

The mesh pattern on the cracked panel portion of the finite element model is

similar to that of the entire plate described in Section 5.1. The characteristic length lc,

however, is defined as 1c =min[a',w'-a',2t]. The radial size, e0, of those 15-node

wedge-shaped elements attached on the crack front is set to be equal to 0.4% of the

characteristic length, i.e. e0 = 0.004/c. On the part of the finite element model containing

uncracked panel and 3 stiffeners, the mesh is controlled to be as coarse as possible in

order to reduce the overall number of elements. The full thickness of the panel, 2t, is

divided into 30 element layers, in which are two symmetric parts that includes 15 layers

each. For each half thickness, 5 large layers are near the centerline, 5 small layers are

near the free surface, and 5 mid-size layers are in between. The three element sizes of

each category of these layers, in terms of the half thickness t and from large to small, are

0.04t, 0.07t, and 0.09t, respectively. Figure 5.10 shows the mesh refinement and element

sizes near the crack front and through the thickness. The overall mesh contains 10539

elements and 46780 nodes with 140340 degrees of freedom.
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Figure 5.1
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A through-thickness center-cracked plate subjected to a uniform far-field

displacement.
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Figure 5.2 One-eighth of the plate to be generated as a finite element model.
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Figure 5.3 Finite element mesh of a one-eighth center-cracked plate (a/w=O. 1).

/

-_ e°_ " I _--- Ring #4
Ring #3

Ring #2

Figure 5.4 Mesh refinement near crack front region.
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Figure 5.5 Radius of the outer surface of Ring #12 equals to lOOeo.

Figure 5. 6
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Sizes of element layers in terms of the half thickness t.
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Figure 5. 7 Configuration and dimensions of a center-cracked panel with stiffeners.

Figure 5.8 The finite element model of a one-fourth center-cracked stiffened panel

m '/w - O.1).
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Figure 5.9 Enlarged finite element mesh showing definition of the crack aspect ratio

2t _

a '/w ' ¢a'/w'=0.1).

30 element layers along thickness

J

J

J

J

X

Figure 5.10 Mesh refinements near the crack front of the stiffened panel (a 7w '=0.1).
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6 Results

For the purpose of comparison, the stress intensity factors and T-stresses are

normalized as dimensionless numbers. The normalized stress intensity factor has the form

of K---I = Ki/(cy_-a), while the two normalized T-stresses are defined as Tll1 = T11/cr

and Tl13 = T13/o_ , respectively. Here o_ is the average stress, computed from the total

nodal force, F due to the far-field displacement u, on the plane of Y = 1 (see Figure 5.1)

divided by the cross-sectional area of the plate. For a cracked plate, o _ = F/(wt), where

w is the half width and t is the half thickness. The thickness of the plate is also

normalized because the variations of the stress intensity factor and the T-stresses over the

thickness are to be investigated. The normalized thickness of an element is defined as

-[ : X 3/t, which indicates the normalized x3 coordinate at the centroid of the element.

To determine the distribution of the stress intensity factor and the T-stresses over

the thickness of a particular model, these parameters are first calculated from each of the

three adjacent rings of elements very close to the crack front (Rings #2, #3, and #4 as

shown in Figure 5.4) by the equivalent domain integral and interaction integral. Then an

average value is carried out over three domains.

6.1 Isotropic Plates

A family of isotropic plates with different crack lengths and different thicknesses

is examined. The material properties of Young's modulus E = 10 Msi and Poisson's ratio

v = 0.3 are used in the modeling. To compare the fracture parameters for different

variables, the stress intensity factor KI and Tll stress are retrieved from the element layer

attached to the centerline of the thickness. As shown in Figure 5.6, this layer has a

thickness of 0.0625t, and the x3 coordinate of the centroid is located at 0.03125t. Hence

K_ and Tll of different models will be retrieved and plotted at normalized thickness
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}-= 0.03125.The T13 stress is retrieved from the element layer approximately at the

quarter thickness of a plate, or at the thickness between 0.50t and 0.55t, i.e., Layer #9 as

shown in Figure 5.6, and therefore }-= 0.525 for this element.

6.1.1 Crack Length

First we will consider a plate of thickness 2t = 0.33in. (t/w = 0.00825) with

various crack aspect ratios a/w = 0.1 ~ 0.9. To compare the effects of the thickness on

fracture parameters for the same crack aspect ratios, the results from another set of plates

with thickness of 2t = 10.24 in. (t/w = 0.256 ) are presented as well.

m

Figure 6.1 shows the distribution of the normalized stress intensity factors K_

over half of the thickness for different crack aspect ratios. The distribution of the stress

intensity factor is symmetric with respect to x3=0. K_ is fairly constant over half of the

thickness, except in the region near the free surface (approximately from }-_>0.8 for

a/w=O.1 down to t>0.6 for a/w=0.9), where the stress intensity factor slightly

decreases. Note that there exists a weaker comer singularity near the free surface. The

normalized stress intensity factors at the center of thickness are retrieved and plotted

against the a/w ratios in Figure 6.2. The results for t = 0.165in. show that K_ rises

dramatically from 1.06 at the small crack of a/w = 0.1 to 2.72 as the a/w ratio reaches

0.9. Results from the other set of plates with thickness of t = 5.12 in. (t/w = 0.256 ) are

also shown in the same figure, in which the normalized stress intensity factor increases

from 1.00 to 2.64 as the a/w ratios goes from 0.1 to 0.9. It is slightly smaller than that of

the thinner plate.

m

The 2-D plane strain analytical solution of K_, also shown in Figure 6.2, has the

following form in terms of the crack aspect ratio a/w [38]"

/_(a) : Isec(2 (a))[1 - 0"025(a)2 + 0"06(a)4 ]"w (6.1)
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Whenthenormalizedstressintensityfactorobtainedfrom3-Danalysisis comparedwith

the2-D solution,i.e. Eq.(6.1),deviationwithin 4%ontheaveragefrom the2-Dsolution

is foundfor thethickerplate;morethan5%for thethinnerplate.

Figure6.3showsthe distributionof thenormalizedTll stresses over half of the

thickness in the thinner plate (t = 0.165 in. ) for different crack aspect ratios. The Tll

stress distribution is symmetric with respect to x3=0. For all a/w ratios, the variation of

_1 over half of the thickness is relatively small except in the region near the free surface

(approximately ?-_>0.85), where the comer singularity would cause the Tll stress to

diverge. For most curves (a/w< 0.7), the near-constant part of _1 stays near -1.0,

which is the theoretical 2-D solution. In Figure 6.4 the curve of the thinner plate

(t/w = 0.00825 ) confirms this trend as the magnitude of the normalized Tll stresses stays

between -0.8 and -1.0 before the crack aspect ratio reaches 0.7. Beyond that the

normalized Tll stress increases (in magnitude) rapidly to -3.77 as the a/w ratio reaches

0.9. The other curve representing the thicker plate shows a similar trend, but the

magnitude of _1 at the center increases from -1.02 at the smallest crack, a/w = 0.1, to

- 4.87 at the largest crack, a/w = 0.9.

m

The 2-D solution of rll , also shown in Figure 6.4, can be obtained from the stress

m

biaxiality ratio B and normalized stress intensity factors K_ •

Till =BK_,

where B is a function of the crack aspect ratio a/w [39]:

(6.2)

(6.3)

Results from the thicker plate are closer to the 2-D solution than those of the thinner

plate, although the closeness is only maintained until a/w is near 0.7. This indicates that,

at a small crack, Tll1 of the thicker plate is closer to the plane strain condition than that of

the thinner plate.
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In Figure6.5, the distributionof the normalizedT13 stresses over half of the

thickness of the thinner plate for different a/w ratios does not have a constant portion

shown in the distribution of K_ and Tll. Note that the distribution is anti-symmetric with

respect to x3=0. Instead, the magnitude of the normalized T13 stresses rises monotonically

from zero at the center of thickness to a much larger value near the free surface, and

ultimately back to zero to satisfy the stress-free condition at the free surface. The larger

the crack length is, the more sharply the Tl13stress results. As the normalized T13 stresses

at }-= 0.5 are retrieved for all a/w ratios, as shown in Figure 6.6, it is observed for the

thinner plate that the magnitude of the normalized T13 stresses increases from

approximately-0.35 for a/w = 0.1 to -2.6 for a/w = 0.9. For the case of the thicker

plate, the trend persists. The overall variation of Tll3, however, is much smaller than that

of the thinner plate. The absolute value of the normalized T13 stresses, which goes from

approximately-0.07 for a/w = 0.1 up to near -0.6 for a/w = 0.9, is relatively smaller.

Note that T13 = 0 for the 2-D solution.

6.1.2 Plate Thickness

Another set of plates with different thicknesses is analyzed. The crack aspect ratio

of these plates is kept at a/w = 0.1. The finite element mesh of each model is also kept

the same; i.e., the overall number of elements is unchanged for each finite element model.

Only the dimensions of the elements are slightly changed due to thickness change. The

thickness ranges from a thinner plate of 2t = 0.33in. (t/w= 0.00825) to a very thick

plate of 2t = 20.48 in. (t/w = 0.512 ).

Figure 6.7 shows the variation of normalized stress intensity factors over half of

the thickness for plates with different t/w ratios. It is observed that, for relatively thin

plates (t/w < 0.064 ), K_ tends to decrease as t- goes away from the center of the plate. In

contrast, for relatively thick plates, K_ tends to increase in the thickness beyond the
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m

region of [ > 0.3. The variation of K_ for all t/w ratios at the center of thickness is

plotted in Figure 6.8. For very thin plates (approximately t/w < 0.03 ), the normalized KI

almost stays constant near 1.06. As the thickness increases up to t/w > 0.5, K_ gradually

decreases to near 1.0, which is the 2-D solution for very small crack length, i.e.,

a/w O.

The normalized T11 stresses over half of the thickness for plates with different t/w

ratios are plotted in Figure 6.9. The normalized Tll stresses are fairly constant in the

region of t < 0.75 for all cases. Beyond that, Tll1 in a thinner plate deviates much more

than it would in a relatively thick plate. These stresses, or the normalized Tll stresses at

center of the plate thickness, are extracted and plotted against the t/w ratios in logarithmic

scale in Figure 6.10. The stresses, as shown also in Figure 6.9, increase gradually in

magnitude from approximately -0.79 in a very thin plate (t/w = 0.004 ) to -1.01 in a very

thick plate (t/w = 0.512 ).

In Figure 6.1 l, the distribution of the normalized T13 stresses over half of the

thickness rises in magnitude from zero at }-= 0 to a larger value near the free surface.

This trend is the same as that in Figure 6.5. In general the normalized T13 stresses

decrease in terms of the magnitude as the plate thickness increases. The trend is observed

for the normalized T13 stresses at }-= 0.5 of each plate in Figure 6.12, in which the

magnitude of Tll3 decreases from approximately-0.5 for a very thin plate (t/w = 0.004)

to near -0.02 for a very thick plate (t/w = 0.512 ).

6.20rthotropic Plates

The plates of same dimensions are analyzed again with the properties of a

composite material. The composite is AS4 carbon warp-knit fabric design by Boeing for

the all-composite wing skin in a commercial aircraft [29]. It has the overall orthotropic

material properties that are listed in Table 6.1. The orientation of the material coordinates



Table 6.1 Material properties of the orthotropic plate.
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E x = 5.162 Msi Grz = 0.64 Msi v rz = 0.22

E r = 11.773 Msi Gxz = 0.57 Mpsi Vxz = 0.29

E z = 1.53 Msi G_ = 2.479 Msi v_ = 0.1758

is referred to the global coordinate system shown in Figure 5.1.

6.2.1 Crack Length

m

The distribution of the normalized stress intensity factors K_ through half of the

thickness for various crack aspect ratios is shown in Figure 6.13. Each curve of the five

different a/w ratios is relatively flat, meaning that K_ is almost constant over the

thickness. In fact, the amount of fluctuation of K_ is less than 3% and occurs only in the

region where [_> 0.85. In comparison to Figures 6.13 and 6.1, it is observed that K_ of

the orthotropic material is more constantly distributed than that of the isotropic material.

The magnitude for each a/w ratio for the orthotropic material is also slightly (about 6%)

smaller. The normalized stress intensity factors at the center of thickness increases from

1.00 to 2.54 as the a/w ratio increases from 0.1 to 0.9, as shown in Figure 6.14. Results

from the thicker plate (t/w = 0.256 ) are also shown in the same figure, in which K_

ranges from 1.00 to about 2.52. Figure 6.14 shows that the two curves are almost

identical, indicating that K_ is less sensitive to the change of plate thickness in the

orthotropic material.

Figure 6.15 shows the distribution of the normalized Tll stresses through half of

the thickness for various crack lengths in the thin plate (t = 0.165 in. ). Similar to that of

the isotropic material in Figure 6.3, the variation of Tll is not significant except near the

free surface (approximately }-_>0.85). For the small crack case (a/w = 0.1 ), the flat part

of the Tll1 curve stays around -0.660, which is nearly equal to the material anisotropy
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ratio in the2-Dsolution[291,- _2/s_1 = -0.668. In Figure 6.16, the magnitude of Till

at the center of the thickness increases gradually from -0.66 to -3.22 as the a/w ratio

increases from 0.1 to 0.9, for the case of the thinner plate. The curve of the thicker plate

(t/w = 0.256 ) is almost identical to that of the thinner plate, as it ranges between -0.67

and -3.24. For the thicker plates in both materials, Tll in the orthotropic material is about

two-third of Tll in the isotropic material (see also Figure 6.4). The 2-D solutions of both

material types are about in the same ratio, i.e., -0.668 and -1.0.

The trend of Tl13distribution over half of the thickness for various crack lengths in

Figure 6.17 is similar to that of the isotropic material in Figure 6.5, except the magnitude

for the orthotropic material is much smaller than that of the isotropic cases. In Figure

6.18, normalized T13 stresses of the thinner plate at quarter thickness (}- -_ 0.5 ) range from

about -3.94×10 -2 to -2.87×10 -1 as the a/w ratio increases from 0.1 to 0.9. Tl13of the

thicker plate ranges approximately between - 7.31 × 10 -3 and - 5.86 × 10 -2 . Both curves

retain the trend that appeared in Figure 6.6. The magnitude of T13 for the orthotropic

material, however, is one order less than that in the isotropic material.

6.2.2 Plate Thickness

As the crack aspect ratio a/w is kept at 0.1, various plate thicknesses are adopted

in the finite element model for analysis. The overall mesh configuration and total number

of elements are unchanged, although the element size will be slightly changed due to

thickness change. The half thickness varies from a very thin plate of 0.04in.

(t/w = 0.002 ) to a very thick plate of 10.24in. (t/w = 0.512 ).

The distribution of the normalized stress intensity factors through half of the

thickness for plates with various t/w ratios is shown in Figure 6.19. The overall variation

of K_ for each thickness is relatively small (< 3%). A similar trend to the isotropic cases
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is that K_ tends to decrease in the region of [ _>0.75 for thin plates (t/w < 0.064) and

increase in the region of [ _>0.6 for thick plates. In the region of [ < 0.5, K_ of each

case stays very close to 1.0, the 2-D solution for very small crack lengths. K_ at the

center of thickness for all t/w ratios is retrieved and plotted in Figure 6.20, in which all

normalized stress intensity factors fall between 0.995 and 1.005. The overall difference is

within 1%. Therefore, K_ is rather stable even if the plate thickness increases more than

two orders of magnitude.

Figure 6.21 shows the normalized Tll stresses over half of the thickness for

various t/w ratios. For each plate, Tll1 is fairly constant in the region of [ < 0.75. In the

region near free surface ([ _>0.85 ), however, Tll tends to diverge as also observed in the

isotropic cases (see Figure 6.9). It is observed that approximately at [ = 0.8, all five

curves pass through a point where Tll is near -0.669 that is close to the material

anisotropy ratio, -0.668. Tll at the center of the thickness for all t/w ratios is extracted

and plotted in Figure 6.22. For the plates of t/w >_0.00825, Tll1 ranges between -0.658

and -0.673, or within + 1.5% of the material anisotropy ratio. As the t/w ratio increases

beyond 0.016, i.e., plates with moderate to thick thicknesses, Tll1 falls within + 1% of the

material anisotropy ratio. As the plate becomes thinner (t/w < 0.006), however, the

magnitude of Tll1 decreases from near the material anisotropy ratio to about 90% of that

at t/w = 0.002.

In Figure 6.23, a similar trend to the Tl13 distribution of isotropic plates over half

of the thickness for various t/w ratios is observed. The relative magnitude of Tl13 for

orthotropic plates is one order less than that in isotropic plates. Figure 6.24 shows T13 at

quarter thickness for all plates. As the plate thickness increases to the very thick case of

t/w = 0.512, the magnitude of Tl13decreases to near zero. All normalized T13 stresses in

orthotropic plates are relatively small, compared to those in isotropic plates.
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6.3 Stiffened Panels

All stiffened panels have the orthotropic material properties as listed in Table 6.1

and the dimensions as shown in Figure 5.7. Panels with different crack aspect ratios,

aTw, ranging from 0.1 to 0.9 are analyzed. To illustrate the effect of crack aspect ratios

on normalized stress intensity factor and the T-stresses, each parameter at the centerline

of the thickness will be plotted against a '/w'ratios. The value of a parameter is calculated

from the average values over element layers #15 and #16, which are attached on the

centerline. The thickness of each layer is 0.09t. Therefore the centroid is at-0.045t for an

element in Layer #15 and 0.045t for an element in Layer #16.

The original stiffened panel has a thickness of 2t = 0.33 in. (t/w = 0.00825 ). To

compare the effects of panel thickness on the fracture parameters with the same crack

length, the results from another set of thinner panels of t/w = 0.004 are presented as

well. Note that the stiffener dimensions are fixed for all the normalized studies.

m

The distribution of the normalized stress intensity factors K_ through the entire

thickness of the cracked panels is shown in Figure 6.25. For each crack aspect ratio, the

distribution of K_ appears to be increasing almost linearly from the bottom (?-=-1 ) to

the top (?-= 1) of the panel thickness. The trend clearly shows the bending effect for

thinner stiffened panels. The slope of each K_ curve decreases as the a'/w' ratio

increases. For instance, K_ increases from about 0.8 to 1.9 for a'/w'= 0.1 but ranges

only between 0.96 and 1.06 for a'/w'= 0.9. Figure 6.26 shows K_ at center of the

thickness for panels with various crack aspect ratios. The normalized stress intensity

factor of the thicker stiffened panel (t/w = 0.00825 ) decreases from approximately 1.38

to 1.05, as the aTw' ratio increases from 0.1 to 0.9. The thin stiffened panels

(t/w = 0.004 ) generally have larger K_, which decreases from 1.67 to 1.05 for a 7w'ratio

from 0.1 to 0.9. The difference of two sets of panels, however, becomes smaller as the
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cracklengthincreases.BothpanelsalmosthaveanequalK_ of 1.05 at a'/w" = 0.9. It

indicates that, as the crack length becomes large enough, the panel thickness is irrelevant

to the normalized stress intensity factor.

Figure 6.27 shows the distribution of the normalized Tll stresses over the

thickness of the panel for different a 7w'ratios. The magnitude of Tll1 is generally in an

increasing trend, although the distribution appears more linearly in larger crack lengths.

Overall, the magnitude of Tll1 decreases as the crack length increases. This can be

observed in Figure 6.28 where the normalized Tll stresses are extracted and plotted

against different a 7w' ratios. Though all are negative, Tll of the thicker panel increases

from -0.91 at a'/w'= 0.1 to -0.52 at a'/w" = 0.9, while Tll1 of the thinner panel ranges

from-1.17 to -0.41. For smaller cracks (a'/w'< 0.7), the normalized Tll stress of the

thinner panel is larger (in magnitude) than that of the thicker panel. For larger cracks

(a'/w'>_ 0.8), however, the trend reverses as the thinner panel has a smaller Tll1 (in

magnitude).

m

In Figure 6.29, the distribution of T13 through the thickness appears in a nearly

anti-symmetric manner with respect to the thickness centerline, t- = 0. The shape of each

Tl13 curve is similar enough that it seems all curves are shifting within a range

approximately equal to 0.5. The overall variation of T13 for all a 7w'ratios ranges between

-0.1 and-l.5. Tl13at center of the thickness for each crack length of both sets of panels is

retrieved and plotted in Figure 6.30. Both curves form part of a parabola, respectively.

For the thicker panels (t/w = 0.00825 ), Tl13 decreases from -0.93 at aJw'= 0.1 to -0.95

at a'/w'= 0.3 near the lowest point of the curve, then increases to about -0.58 at

a'/w'= 0.9. For the thinner panels, the normalized T13 stress swings from -1.86 at

a'/w'= 0.1 to -1.22 at a'/w'= 0.9. In between the lowest point is near a'/w'= 0.4

where Tl13is approximately-2.16. Figure 6.30 shows the thinner panel has larger Tl13 (in
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m

magnitude) for different crack lengths. And the maximum amplitude of T13 for a panel of

fixed thickness occurs at a moderate crack aspect ratio.
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7 Summary and Conclusions

The equivalent domain integral method is used to determine the point-wise stress

intensity factor, or the distribution of it along a three-dimensional crack front. This

method is modified from J-integral with the use of a weighting function, i.e., the s-

function. In the practice of numerical computation, the finite element shape function is

applied as the s-function.

In addition to the stress intensity factor, a second fracture parameter, namely the

T-stress, is determined in order to better characterize the fracture behavior. The

components of T-stress can be obtained by the evaluation of the interaction integral. The

interaction integral is derived from the equivalent domain integral method with the

concept of an auxiliary field. The auxiliary field is the solution corresponding to uniform

force acting on the crack front. The Stroh formalism is used to derive the auxiliary stress

and displacement fields associated with different T-stress components, such as Tll and

T13, in the monoclinic material with the plane of symmetry at x3=0.

The finite element models are made on two sets of through-thickness center-

cracked plates with isotropic and orthotropic material properties, respectively. Similar

finite element meshes are generated on another set of orthotropic composite panels with

stiffeners. All of these structures are under the mode-I uniform displacement loading.

For plates, the stress intensity factor will increase as the crack length increases in

plates with the same dimension. The effect of material properties on the stress intensity

factors at the center of the plate is not significant and all of the stress intensity factors are

close to the corresponding 2-D solutions, especially for relatively thick plates. For plates

of different thicknesses with the same crack length, the stress intensity factor for isotropic

plates decreases as the thickness increases while for orthotropic plates the trend is

relatively insensitive. For panels with stiffeners, however, the stress intensity factor

decreases as the crack length in the panel increases. Similar to the unstiffened plates, a
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thinner stiffened panel has a larger stress intensity factor for a given crack length. The

exception occurs for the case of relatively larger crack lengths, e.g., a'/w" = 0.9, where

two sets of thin panels of different thicknesses have nearly identical values of stress

intensity factor.

The Tll stresses in all cases of center-cracked plates and panels are compressive.

Based on the stress field near the crack tip prior to fracture initiation from a couple tests

[29], the crack may not have tendency to turn. This is in contradiction to the experimental

observation that the crack did turn near the stiffener. A possible reason may be due to

other interacting failure modes, such as delamination and disbond with stitched interface,

that caused the turning. Among plates, the magnitude of Tll increases when the crack

length increases, regardless of the material properties or plate thickness. The thickness

effect in plates with a small length of crack is more profound for isotropic ones, in which

the Tll stress increases (in magnitude) as the thickness increases. Although in general the

orthotropic plates have the same trend, the changes of Tll are relatively small for thicker

plates. The trends observed in plates are reversed in stiffened panels, where Tll decreases

(in magnitude) when a crack length in a panel increases. At small crack lengths, Tll in a

thin panel also has a larger magnitude then T11 in a thick panel.

The T13 stress in plates of both materials increases (in magnitude) when the crack

length increases, but a larger magnitude is found in isotropic plates. T13, however,

decreases in magnitude as the plate thickness increases. For very thick plates, where the

plane strain condition dominates near the middle of plate thickness, T13 approaches zero.

This is also true in two-dimensional analysis, in which Tll is the only effective T-stress

component. In stiffened panels, the magnitude of T13 is generally smaller for large cracks.

The largest magnitude of T13, however, is not found in panels with a smallest crack, but

with a somewhat larger crack.

This research may be extended in the future according to the following aspects.

(1) The loading condition may be extended from uniaxial tension to others, such as pure

bending or biaxial loading. The change of the loading conditions, however, may incur
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mixed-mode effects. If the asymptotic stress field near the crack front includes mixed

modes, the mode-II and mode-III effects must be taken into account for the equivalent

domain integral formulation. The calculation of the stress intensity factors will also

require the consideration of the auxiliary fields [21 ].

(2) The effects of mixed mode may come from the existence of a kinked crack [40].

However, a fracture plate with the kinked crack requires an even larger finite element

model to simulate because it usually is not considered as a symmetric geometry.

(3) Since the stress intensity factors and the T-stresses are related to the material

properties, a composite material may be designed such that a certain level of the

desired parameters can be obtained.
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A. ANSYS Program

The following ANSYS program is to generate a finite element model of one-

fourth of a stiffened panel with a center crack. The structural dimensions are described in

Chapter 5, and the material properties are listed in Table 6.1. The program will output

plain text files which includes data of displacements, strains, stresses, nodal coordinates,

and other parameters to be used later in a FORTRAN program. This program is tested on

ANSYS/ResearchFS, the product combination of ANSYS Revision 5.5.1 licensed to the

North Carolina Supercomputing Center. This program can be modified to generate a

finite element model for the simpler center-cracked plate.

ANSYS commands are not case-sensitive, i.e., a command in uppercase is

identical to a command in lowercase. For the purpose of clarity, however, all commands

and associated arguments are listed with uppercase characters, except the user-defined

parameters that use lowercase characters.
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/BATCH

/UNITS,BIN [ British system of units using inches

[ ................ BEGINNING of Parameters Definition .................

[ Material Properties

*DIM,mat,ARRAY, 3,3,1 [ array to store material properties

mat(l,l) : 5.162e6,11.773e6,1.530e6 [ Ex,Ey,Ez

mat(l,2) : 0.22,0.29,5.162/11.773"0.401 [ NUyz,NUxz,NUxy

mat(l,3) : 0.640e6,0.570e6,2.479e6 [ Gyz,Gxz,Gxy

[ Parameters for Loading Conditions

appstn = 0.001 [ applied far-field uniform strain

[ Geometric Parameters

*DIM,cir,ARRAY, 5,1,1

aow = 0.i

plz : 0.33

plx : 20

ply = 4O

tst : 0.22

hst : 2.3

wst = 1.6+tst/2

wsl : wst-tst

dxc = 8

dxe : dxc-2*wst

dsp = ply*appstn

clp = aow*dxe

ckl = wst+clp

ctf = dxe-clp

[ array of dimensions of the fan-type area

[ a/w ratio

[ full length of the panel in Z-direction (thickness)

[ 1/2 length of the panel in X-direction (w)

[ 1/2 length of the panel in Y-direction (i)

[ 1/2 thickness of the stiffener

[ height of the stiffener

[ 1/2 width of the stiffener (a0)

[ 1/2 width of the base of the stiffener

[ distance between the center of 2 stiffeners

[ distance between the edge of 2 stiffeners

[ applied far-field displacement

[ crack length in panel portion (a')

[ 1/2 crack length (a=a0+a')

[ panel length in front of crack tip

[ Parameters for Mesh Control

*DIM,neci,ARRAY,3,1,1

*DIM,srrI,ARRAY,3,1,1

*DIM,zkpn,ARRAY,4,1,1

*DIM,zntk,ARRAY,6,1,1

*DIM,nezi,ARRAY,6,1,1

neci(1) = 1,12,1

srrl(1) = 1,26,1

zntk(1) : 0.20,0.35,0.45,0.45,0.35,0.20

nezi(1) = 5,5,5,5,5,5

narc : 6 [ number of arcs for a 90-degree span

angc = 90/narc [ arc angle per element

nezz = nezi(1)+nezi(2)+nezi(3) [ number of element layers along 1/2

[ thickness

nerr= neci(2) [ number of elements in r-direction

neyf = 6 [ number of solid model divisions in

[ Y-direction of far-field portion

sryf = 32 [ spacing ratio in Y-direction of far-field portion

[ mesh-control parameters over the fan

[ spacing ratios for radial lines

[ keypoint numbers at Z-direction interfaces

[ normalized thicknesses for different spacing

[ number of elements in each region

[ Define spacing ratios in X-direction

*IF,aow,LE,0.3,THEN

necl = 2

srl = 3

nec2 = 4

sr2 : i0

*ELSEIF,aow,GE,0.7,THEN

necl = 4

srl : i0

nec2 = 2

sr2 = 3

*ELSE [ 0.3 < a'/w' < 0.7
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necl : 3

srl : 9

nec2 : 3

sr2 = 9

*ENDIF

[ Define critical length

*IF,aow,LE,0.5,THEN [ a'/w' <: 0.5

*IF,pIz,LE,clp,THEN [ (2t<=a')

icr = plz [ critical length = min[a',w'-a',2t]

*ELSE [ (2t>a')

icr = clp [ critical length = min[a',w'-a',2t]

*ENDIF

*ELSE ! a'/w' > 0.5

*IF,plz,LE,ctf,THEN [ (2t<:w'-a')

icr = plz [ critical length = min[a',w'-a',2t]

*ELSE [ (2t>w'-a')

icr = ctf [ critical length = min[a',w'-a',2t]

*ENDIF

*ENDIF

rac = 0.004*icr [ radial size of the smallest element (e0)

cir(1) = 0,rac,100*rac,150*rac

dyf = ply-cir(4) [ length in Y-direction

tw = (plz/2)/plx [ t/w ratio

[ ................... END of Parameters Definition ....................

/TITLE,I/4 stiffened panel,a'/w'=%aow%,t/w=%tw%,icr=%icr%,e0=%rac%; C. Lin

[ ................. BEGINNING of Preprocessing Phase ..................

/PREP7

ET,I,95 ..... i

[

KEYOPT,I,II,I

ET,2,93

MP

MP

MP

MP

MP

MP

MP

MP

MP

EX, l,mat (i,i)

EY, l,mat (2,1)

EZ,l,mat (3,1)

PRXY, 1 ,mat (3,2)

PRYZ, 1 ,mat (i, 2)

PRXZ, 1 ,mat (2,2)

GXY, l,mat (3,3)

GYZ,l,mat(l,3)

GXZ, l,mat (2,3)

[ element type: SOLID95, the 20-node 3-D structural

element with solution output at integration points

[ 2x2x2 reduced integration option

[ SHELL93, 8-node plate element

[ assign material properties

[ Solid Model Generation:

[ Generate fan-type areas over a span of 90 degrees

LOCAL,14,0,ckl,0,-plz/2 [ local Cartisian c.s. #14 at crack tip

WPCSYS,I,14 [ set working plane at local c.s. #14

*DO,i,l,narc [ generate the innermost ring, Ring #0

PCIRC,cir(1) ,cir(2) , (i-l)*angc,i*angc

*ENDDO

PCIRC,cir(2),cir(3),0,90

RECTNG,0,cir(4 ,0,cir(4)

ARSYM,X,ALL

BTOL,rac/100 [ set Boolean operation tolerance

AOVLAP,ALL [ create areas on the x-y plane

BTOL,DEFA

[ annular area to be mapped meshed later

[ Set line divisions on all circumferencial and radial lines
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LOCAL,15,I,ckl,0,0 [ local cylindrical c.s. #15 at crack tip

LSEL,S,LOC,X, cir(2)

LESIZE,ALL,,,I [ set divisions on circumferencial lines

*DO,i,l,3

LSEL,S,LOC,X, (cir(i)+cir(i+l))/2

LESIZE,ALL,,,neci(i),srrl(i) [ set divisions on radial lines

*ENDDO

[ Concatenate lines around the fan-type area for mapped mesh later

*DO,i,l,2

LSEL,S,LOC,X,cir(2)

LSEL,R,LOC,Y, (i-i)'90,i'90

LCCAT,ALL

LSEL,S,LOC,X,cir(4)/2*SQRT(5)

LSEL,R,LOC,Y, (i-i)'90,i'90

LESIZE,ALL,,,narc/2,1

LCCAT,ALL

*ENDDO

LSEL,ALL

NUMCMP,ALL [ compress all numbering

[ Mesh areas on X-Y plane

/NERR,3
ASEL,S,LOC,X,0,cir(2)

AATT,I,I,2

MSHAPE,I,2D

AMESH,ALL

ASEL,INVE

AATT,I,I,2

MSHAPE,0,2D

AMESH,ALL

LSEL,S,SPACE,,0

LDELE,ALL

[ turn off warning messages

[ mesh areas containing crack tip with triangle elements

[ areas meshed with SHELL93 elements

[ mesh other areas with quadrilateral elements

[ areas meshed with SHELL93 elements

[ select concatenated lines to be deleted

[ delete concatenated lines

[ Generate the finite element model along full panel thickness

ASEL,ALL

TYPE,I [ designate element type as SOLID95

CSYS,0 [ set active c.s. as global Cartesian

zi = -plz/2

*DO,i,l,6 [ generate SOLID95 elements by extending selected areas

ESIZE,,nezi(i)

VEXT,ALL ..... zntk(i)*plz/2

zi = zi+zntk(i)*plz/2 [ Z-coordinate of the areas to be offset

ASEL,S,LOC,Z,zi

*ENDDO

ASEL,S,TYPE,,2,,,I

ACLEAR,ALL [ delete all SHELL93 elements

[ Construct the other portions of the panel

CSYS,14 [ switch to the local Cartesian c.s. on the crack tip

NUMSTR,KP,1001

NUMSTR,LINE,2001

KSEL,S,LOC,Z,0

KSEL,R,LOC,Y,0

KSEL,R,LOC,X,-cir(4)

*GET,nkpI,KP,0,NUM,MAX [ nkpl: keypoint # of this keypoint

KGEN,2,ALL,,,-(clp-cir(4)) [ keypoint #i001

L,nkpl,1001,necl,srl [ line #2001

KSEL,S,LOC,Z,0

KSEL,R,LOC,Y,0
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KSEL,R, LOC, X, cir (4)

*GET,nkp2,KP,0,NUM,MAX [ nkp2: keypoint # of this keypoint

KGEN,2,ALL, ,,dxe-clp-cir(4) [ keypoint #1002

L,nkp2,1002,nec2,sr2 [ line #2002

NUMSTR, DEFA

ASEL, $, LOC, X, -cir (4)

VDRAG,ALL ...... 2001 [ generate cracked portion of the panel

ASEL, $, LOC, X, cir (4)

VDRAG,ALL ...... 2002 [ generate uncracked portion of the panel

[ Generate the central stiffener

C$Y$,0 [

ASEL,S,LOC,X,wst

ESIZE,,I

VEXT,ALL,,,-wsl

ASEL,S,LOC,X, tst

ESIZE,,I

VEXT,ALL,,,-tst

ASEL,S,LOC,Z,plz/2

ASEL,R,LOC,X,0,wst

ESIZE,,I

VEXT,ALL ..... tst

ASEL,S,LOC,Z,plz/2+tst

ASEL,R,LOC,X,0,tst

ESIZE,,I

VEXT,ALL ..... hst-tst

switch back to global Cartesian c.s.

[ Generate the second stiffener

VSEL,S,LOC,X, tst,wst,,I

[

LOCAL,II,0,dxc/2,0,0

VSYMM,X,ALL

LOCAL,12,0,dxc,0,0

[

ASEL,S,LOC,X,-tst

ESIZE,,I

VEXT,ALL,,,2*tst [

ASEL,S,LOC,Z,plz/2+tst

ASEL,R,LOC,X,-tst,tst

ESIZE,,I

VEXT,ALL ..... hst-tst

[

VSEL,S,LOC,X,-wst,-tst,,I

VGEN,2,ALL,,,wst+tst

[

[ select volumes on the outer central

stiffener

[ set local Cartesian c.s. #ii

[ generate volumes on the inner second stiffener

[ set Cartesian c.s. #12 at the center of the

second stiffener

create volumes in the base of the second stiffener

[ generate volumes in the height of the second

stiffener

[ generate volumes in the outer part of the

second stiffener

[ Generate the outmost stiffener

VSEL,S,LOC,X,-wst,wst,,I [ select all volumes in the second stiffener

LOCAL,13,0,1.5*dxc,0,0 [ set Cartesian c.s. #13

VSYMM,X,ALL [ generate the entire outmost stiffener

[ Generate the uncracked panel and the outmost panel

LOCAL,16,0,2*dxc,0,0 [ set Cartesian c.s. #16

ASEL,S,LOC,X,-wst

ASEL,R,LOC,Z,-pIz/2,pIz/2

VEXT,ALL,,,-dxe

ASEL,S,LOC,X,wst

ASEL,R,LOC,Z,-pIz/2,pIz/2

VEXT,ALL,,,dxe/2

[ generate the uncracked part of the panel

[ generate the outmost part of the panel
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ALLSEL,ALL,ALL

NUMMRG,ALL,Ie-6

NUMCMP,ALL [ compress all numbering

[ Construct the entire FE model by extending areas along Y-axis

CSYS,0

NUMSTR,KP,1001

NUMSTR,LINE,2001

KSEL, S, LOC, X, 0

KSEL,R, LOC, Z, 0

KSEL,R, LOC, Y, cir (4)

*GET,nkp3,KP,0,NUM,MAX [ nkpl: keypoint # of this keypoint

KGEN,2,ALL .... dyf [ keypoint #i001

L,nkp3,1001,neyf,sryf [ line #2001

ASEL,S,LOC,Y, cir(4)

VI)RAG,ALL ...... 2001 [ the entire finite element model completed

ALLSEL,ALL,ALL

NUMMRG, ALL, le-6

NUMCMP,ALL

/VIEW, I,1,1,1

/ANGLE,I,-90,XM

/AUTO,I

/TYPE,ALL,2

[ compress all numbering

[ set viewing point for plots

ASEL,S,LOC,Y,ply

ASUM

*GET,ayt,AREA, 0,AREA

/OUTPUT,par,dat

*STATUS,ayt

/OUTPUT

ASEL,ALL

FINISH [ finish generation of the finite element model

[ ..................... END of Preprocessing Phase ....................

[ calculate the total area on the far-field end

[ output data in <par.dat> file

[ "ayt": total area on the far-field end

[ .................... BEGINNING of Solution Phase ....................

/SOLU

ANTYPE,STATIC [ static analysis

NSEL,S,LOC,X,0

D,ALL,UX,0 [ set X-symmetry boundary conditions

NSEL,R,LOC,Y,0

NSEL,R,LOC,Z,-plz/2

D,ALL,UZ,0

NSEL,S,LOC,Y,ply

D,ALL,UY,dsp

NSEL,S,LOC,Y,0

NSEL,R,LOC,X, ckl,plx

D,ALL,UY,0 [ set Y-symmetry boundary conditions

NSEL,ALL

EQSLV, PCG,Ie-8 [ use the PCG solver

ERESX,NO [ ouput integration point results to the nodes

SAVE

SOLVE

FINISH

[ ....................... END of Solution Phase .......................

[ set Z-constraints at the center of plate

[ apply the prescribed displacement at far end

[ ................. BEGINNING of Postprocessing Phase .................

/POST1

nezt : nezz*2 [ number of element layers along thickness

*DIM,cmring,CHAR,3,1,1
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*DIM,zf,ARRAY,nezt+I,I,I [ array to store Z-coordinate of every layer

cmring(1) 'ring2','ring3','ring4'

srr = srrl(2)**(i/(neci(2)-l)) [ spacing ratio between adjacent

[ elements in r-direction

esr = (cir(3)-cir(2))*(l-srr)/(l-srr**neci(2)) [ element size in r-direction

zf(1) = -plz/2 [ Z-coordinate at bottom of the first layer

kring = 3 [ number of rings to be recorded

k : 1

*DO,i,l,6 [ i: index for mesh-size region (= dimension of "zntk")

eszi = zntk(i)*(plz/2)/nezi(i) [ element size (z) in each region

*DO,j,l,nezi(i) [ j: index for the number of element layer

k : k+l

zf(k) = zf(k-l)+eszi

*ENDDO

*ENDDO

SET,I

NSEL,S,LOC,Y,ply

FSUM

*GET,fyt,FSUM,0

/OUTPUT,par,dat

*STATUS,fyt

*STATUS,nezt

*STATUS,plx

*STATUS,plz

*STATUS,mat,I,3

*STATUS,appstn

*STATUS,ckl

*STATUS,narc

*STATUS,kring

*STATUS,nerr

*STATUS,aow

/OUTPUT

NSEL,ALL

CSYS,15

DSYS,15

ITEM,FY

,APPEND

1,3

[ select nodes on the far end

[ calculate total nodal force on the far end

[ "fyt": total nodal force on the far end

[ number of elements layers along thickness

[ activate local cylindrical c.s. at crack tip

[ set display c.s. to #15

[ Write stresses, strains, displacements, and nodal coordinates of

[ every elements into files

/OUTPUT,sts,dat [ <sts.dat> file to store stresses

/OUTPUT

/OUTPUT,stn,dat [

/OUTPUT

/OUTPUT,dis,dat [

/OUTPUT

/OUTPUT,node,dat [

/OUTPUT

<stn.dat> file to store strains

<dis.dat> file to store displacements

<node.dat> file to store node coordinates

*DO,k,2,kring+l [ select from Ring #2 to Ring #(kring+l)

NSEL,S,LOC,X,rac+esr*(l-srr**(k-l))/(l-srr),rac+esr*(l-srr**k)/(l-srr)

CM, cmring(k-l) ,NODE [ group all nodes in the domain to be integrated

*DO,i,l,nezt [ i: index for layer in Z-direction

NSEL,R,LOC,Z,zf(i) ,zf(i+l)

CM,nlayer,NODE

*DO,j,l,narc*2 [ j: index for element in the same layer

NSEL,R,LOC,Y,angc*(j-l),angc*j

ESLN, S,I [ select an element

/FORMAT, , E

/HEADER,OFF,OFF,OFF,OFF,ON,ON
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/OUTPUT,sts,dat,,APPEND

*MSG, INFO,k,i,j

Ring # %I , Segment # %I ,

PRESOL,S

/OUTPUT

/OUTPUT,stn,dat,,APPEND

*MSG, INFO,k,i,j

Ring # %I , Segment # %I ,

PRESOL,EPEL

/OUTPUT

/HEADER,OFF,OFF,OFF,OFF,OFF,OFF

/OUTPUT,dis,dat,,APPEND

*MSG, INFO,k,i,j

Ring # %I , Segment # %I ,

PRNSOL,DOF

/OUTPUT

/OUTPUT,node,dat,,APPEND

*MSG, INFO,k,i,j

Ring # %I , Segment # %I ,

ELIST,ALL,,,0,0

NLIST,ALL .... Z,Y,X

/OUTPUT

CMSEL,S,nlayer

*ENDDO

CMSEL,S,cmring(k-l)

*ENDDO

*ENDDO

Element # %1 :

Element # %1 :

Element # %1 :

Element # %1 :

[ Write Strain 33 for every crack-front element.

/OUTPUT,stn33,dat [ <stn33.dat> file to store strains e 33

/OUTPUT

NSEL,S,LOC,X,0,rac

CM,fan,NODE [ group all nodes in the fan-type domain

/FORMAT,,E

/HEADER,OFF,OFF,OFF,OFF,ON,ON

*DO,i,l,nezt [ i: index for layer in Z-direction

NSEL,R,LOC,Z,zf(i),zf(i+I)

CM,nlayer,NODE

NSEL,R,LOC,X,0 [ select 3 nodes on the crack front

CM,nfront,NODE

CMSEL,S,nlayer

*DO,j,l,narc*2 [ j: index for element in the same layer

NSEL,R,LOC,Y,angc*(j-I) ,angc*j

*IF,j,GT,I,THEN

CMSEL,A,nfront

*ENDIF

ESLN,S,I [ select an element

/OUTPUT,stn33,dat,,APPEND

*MSG,INFO,0,i,j

Ring # %I , Segment # %I , Element # %I :

PRESOL,EPEL

/OUTPUT

CMSEL,S,nlayer

*ENDDO

CMSEL,S,fan

*ENDDO

/HEADER,DEFA

NSEL,ALL
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ESEL,ALL

DSYS,0

CSYS,0

FINISH

[ .................... END of Postprocessing Phase ....................

/EXIT
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B. FORTRAN Program

The following FORTRAN program is used to calculate the stress intensity factor

and the T-stresses along a three-dimensional crack front in the stiffened panel. The crack

is under mode-I loading (either a uniform displacement or a uniform stress) on the far

ends of the structure. The material type can be isotropic or orthotropic. The general input

of the program is from data files containing stresses, strains, displacements, nodal

coordinates and other associated parameters that are generated from a finite element

analysis run by ANSYS.

The program is created and tested in the Microsoft Fortran PowerStation 4.0, a

commercially available FORTRAN development software for Windows NT and

Windows 95 operating systems. Although the Fortran PowerStation 4.0 incorporates all

the features of Fortran 90, this program is intentionally written by the FORTRAN 77

syntax. This arrangement would maintain the flexibility that the program can be also run

on the platforms that still carry FORTRAN 77. However, the program employs some of

the IMSL libraries, the integrated mathematical and statistical functions, which may not

be available on every platform with the FORTRAN capability.
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PROGRAM T STRESS

C This program calculates the stress intensity factor K I and the T-stress

C components of TII, TI3 and T33 of a 3-D crack problem.

C The capabilities of the program in calculation of the finite element

C model are 50 element layers along the crack front, 24 elements per 180

C degrees.

Definition of Selected Variables:

ADISP(i,j) Array for the auxiliary displacement field (for TII) within an

ADISPI3(i,j)

APPSTN

APPSTS

ARC

ASTRN(i,j)

ASTRNI3(i,j)

ASTRS(i,j)

ASTRSI3(i,j)

AYT

COORD(i,j)

COORDL ( i, j )

CPL (i, j )

CPLR(i,j)

CRKL

DISP(i,j)

EM(i)

ES

EZZ (i)

EZZA(i)

EX

F

FF

FYT

GM(i)

IRING

K2 (i)

LOAD

MAT

MIE(i,j)

MNE (i, j, k)

MU(i,j)

NI80

N90

NSEG

PL

PLX

PLZ

PR

PRM (i)

RG(i) ,SG(i) ,TG(i)

element, i=i..20, j=l..3.

Array for the auxiliary displacement field (for TI3) within

an element, i=i..20, j=l..3.

Far-field strain.

Applied far-field stress.

Arc length (in degree) of a single element

Array for the auxiliary strain field (for TII) within an

element, i=i..8, j=l..6.

Array for the auxiliary strain field (for TI3) within an

element, i=i..8, j=l..6.

Array for the auxiliary stress field (for TII) within an

element, i=i..8, j=l..6.

Array for the auxiliary stress field (for TI3) within an

element, i=i..8, j=l..6.

Total cross sectional area on the far end.

Array for the j-th local cylindrical coordinates of the i-th

node of the element, i:i..20.

Array for the j-th local Cartesian coordinates of the i-th

node of the element, i:i..20.

Array for the 6x6 compliance matrix.

Array for the 5x5 reduced compliance matrix.

1/2 crack length.

Aarray for the displacements of the i-th node, i=i..20, j=l..3

representing UX, UY, and UZ, respectively.

Array for 3 Young's moduli.

Element thickness, or the length of "delta".

Array for the average Ezz strains within an element.

Array for the average Ezz strains of an element layer.

Young's modulus of the isotropic material.

Area under the s-function curve.

Magnitude of the uniform force on the crack front.

Total nodal force on the far end.

Array for 3 shear moduli.

Number of the element rings to be computed.

Array for the square of the Stroh normalization factors.

Loading ID number, l:fixed displacement, 2:fixed stress.

Material ID number, l:anisotropic, 2:isotropic.

Array for the global element number at the j-th location of the

i-th layer(segment).

Array for the global node number at the j-th location of the

i-th layer(segment), k=l..20 is the local node number.

Array for the Storh eigenvalues.

Number of the elements per 180 degrees.

Number of the elements per 90 degrees.

Number of the element layers(segments) along crack front.

Location for the integration points.

1/2 panel width.

Panel thickness.

Poisson's ratio of the isotropic material.

Array for 3 Poisson's ratios.

Arrays for the natural coordinates of Gaussian
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C integration points, i=i..8.

C Slip The i-i component of the reduced compliance, sll'.

C SIFI(i,j) Array for the value of the stress intesity factor in the i-th

C element layer of the j-th ring.

C SIFIN(i,j) Array for the value of the normalized stress intesity factor in

C the i-th element layer of the j-th ring.

C SIFINAVG(i,2) The average normalized stress intensity factor.

C SINF Equivalent far-field stress.

C STRN(i,j) Array for the FE result of strains within an element. The

C i-th row stores strain components at the i-th Gaussian

C integration point, i:i..8. Strain components from ist to 6th

C column are [Exx,Eyy,Ezz,Exy,Eyz,Exz], respectively.

C STRS(i,j) Array for FE result of stresses within an element. See "STRN"

C for similar definition.

C Tll(i,j) Array for the value of the TII stress in the i-th element layer

C of the j-th ring.

C TIIN(i,j) Array for the value of the normalized TII stress in the i-th

C element layer of the j-th ring.

C Tl3(i,j) Array for the value of the TI3 stress in the i-th element layer

C of the j-th ring.

C TI3N(i,j) Array for the value of the normalized TI3 stress in the i-th

C element layer of the j-th ring.

C T33(i,j) Array for the value of the T33 stress in the i-th element layer

C of the j-th ring.

C T33N(i,j) Array for the value of the normalized T33 stress in the i-th

C element layer of the j-th ring.

C TIINAVG(i,2) The average normalized TII stress in the i-th layer.

C TI3NAVG(i,2) The average normalized TI3 stress in the i-th layer.

C T33NAVG(i,2) The average normalized T33 stress in the i-th layer.

C THICK(i,j) Array for Z-coordinate (j=l global; j=2 normalized) of the

C center of the i-th segment, i.e. the "s" corresponding to the

C local I(s) .

C Difference of mul and mu2 (Stroh eigenvalues) .

C Sum of mul and mu2 (Stroh eigenvalues) .

C Product of mul and mu2 (Stroh eigenvalues) .

C Aarray for the value of local I(s) (equivalent domain

C integral of the i-th segment) in the j-th ring.

C Aarray for the value of local I(s) (interaction integral

C of the i-th segment) for TII in the j-th ring.

C Aarray for the value of local I(s) (interaction integral

C of the i-th segment) for TI3 in the j-th ring.

C Array for the value of the equivalent domain integral of

C each element, i:I..IRING; j:I..NSEG.

C Array for the value of the interaction integral of each

C element for TII. i:I..IRING; j:I..NSEG.

C Array for the value of the interaction integral of each

C element for TI3. i:I..IRING; j:I..NSEG.

UMINU

UPLUS

UPROD

VEDI(i,j)

VII(i,j)

VI2 (i,j)

X0J(i,j,k)

XlJ(i,j,k)

X2J(i, j ,k)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMPLEX(8) MU(3,2) ,K2,P,Q,UPLUS,UMINU,UPROD

PARAMETER (FF : i)

CHARACTER HEAD*40,RING*7

DIMENSION RING(6)

DATA RING /'RING #2','RING #3','RING #4','RING #5','RING #6','RING

+ #7'/

COMMON PI,PL,HEAD

COMMON /AUX/ ASTRS(8,6) ,ASTRN(8,6) ,ADISP(20,3)

COMMON /AUXI3/ ASTRSI3(8,6) ,ASTRNI3(8,6),ADISPI3(20,3)

COMMON /FESOL/ DISP(21,3) ,STRS(8,6) ,STRN(8,6)

COMMON /FEMOD/ MIE(50,24) ,MNE(50,24,20) ,COORD(21,3) ,COORDL(20,3)
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COMMON /MATL/ CPL(6,6),CPLR(5,5),EX,PR

COMMON /MUS/ UPLUS,UMINU,UPROD,B,D,K2(3),P(2,2),Q(2,2)

COMMON /GIP/ RG(8) ,SG(8),TG(8)

DIMENSION EM(3),GM(3) ,PRM(3) ,CPLN(3)

DIMENSION VEDI(50,6),VII(50,6) ,X0J(4,50,24) ,XlJ(4,50,24)

DIMENSION EZZ(24),EZZA(50),THICK(50,3),SIFI(50,6),TII(50,6)

DIMENSION SIFIN(50,6) ,TIIN(50,6)

DIMENSION VI2(50,6) ,X2J(4,50,24) ,TI3(50,6),TI3N(50,6)

DIMENSION T33(50,6) ,T33N(50,6)

DIMENSION SIFINAVG(50,2),TIINAVG(50,2),TI3NAVG(50,2) ,T33NAVG(50,2)

OPEN (l,FILE:'sts.dat',STATUS:'unknown') [ stress data file

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

(2,FILE='stn.dat',STATUS:'unknown')

(3,FILE='dis.dat',STATUS:'unknown')

(4,FILE:'node.dat',STATUS:'unknown')

(5,FILE:'tsts.out',STATUS:'unknown')

(8,FILE:'stn33.dat',STATUS:'unknown'

(9,FILE:'par.dat',STATUS:'unknown')

(12,FILE:'KIN.out',STATUS:'unknown')

(13,FILE:'TIIN.out',STATUS:'unknown'

(24,FILE:'TI3N.out',STATUS:'unknown'

(25,FILE:'T33N.out',STATUS:'unknown'

[ strain data file

[ displacement data file

[ nodal data file

[ parameter output file

[ crack-front strain data file

[ parameter data file

Pl = ACOS(-I.0)

PL = 1.0/SQRT(3.0) [ location for integration points

C...Read parameters:

READ (9,' (I1,TR4,I1)') MAT,LOAD

READ (9,' (/////TRll,E16.9)') AYT

IF (MAT .EQ. 1) WRITE (5,' ("Material: Anisotropic")')

IF (MAT .EQ. 2) WRITE (5,' ("Material: Isotropic")')

IF (LOAD .EQ. 1) WRITE (5,' "Far-field loading: Fixed Displacement

+.)')

IF (LOAD .EQ. 2) WRITE (5, "Far-field loading: Fixed Load")')

READ (9,' (/////TRII,EI6.9) FYT

IF (LOAD .EQ. i) WRITE (5, (A23,1P,EI6.9)') 'Total Nodal Force FY

+: ',FYT

WRITE (5,' (A22,EI4.7)') 'Cross-sectional area =',AYT

READ (9,' (/////TRI2,12)') NSEG

WRITE (5,' (A17,I3)') 'No. of Segments =',NSEG

READ (9,' (/////TRII,FII.9)') PLX

WRITE (5,' (AIS,IP,EI3.6,A3)') '1/2 Panel width = ',PLX,'in'

READ (9,' (/////TRII,EI6.9)') PLZ

WRITE (5,' (A23,EI3.6,A3)') 'Full Panel Thickness = ',PLZ,'in'

GOTO (1,6) MAT [ read mat'l properties based on the mat'l type

1 READ (9,3) (EM(K) ,K:I,3), (PRM(K),K:I,3), (GM(K),K:I,3)

3 FORMAT (/////9(TR28,EI6.9/))

4 FORMAT (3 (El4.10,5X)/,3 (FII. i0,8X) /,3 (El4.10,5X))

WRITE (5,5) (EM(K) ,K=I,3), (PRM(K),K=I,3), (GM(K),K=I,3)

5 FORMAT ('Ex,Ey,Ez = ',3(IP,EI6.9,1X),' psi',/'NUyz,NUxz,NUxy = ',

+3(0P,FII.9,1X) ,/'Gyz,Gxz,Gxy = ',3(IP,EI6.9,1X),' psi')

GOTO (7,8) LOAD [ determine load type

6 READ (9,' (/////TRII,EI5.8)') EX

WRITE (5,' (A21,EI5.8,A4)') "Young's Modulus Ex = ",EX,"psi"

READ (9,' (/////TRI2,EI5.9)') PR

WRITE (5,' (A22,F6.4)') "Poisson's Ratio nuxy = ",PR

GOTO (7,8) LOAD [ determine load type

7 READ (9,' (/////TRII,EI6.9/)') APPSTN

WRITE (5,' (AI8,1P,EI3.6)') 'Far-field strain : ',APPSTN

SINF = ABS(FYT/AYT) [ equivalent far-field stress

GOTO 9
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READ (9,' (/////TRI2,EIS.8/)) APPSTS

WRITE (5,' (AI7,1P,EI3.6,A4) ) 'Far-field load : ',APPSTS,'psi'

SINF : APPSTS

WRITE (5,' (A30,1P,EI3.6,A4) ) 'Equivalent far-field stress = ',

+SINF,'psi'

READ (9,' (////TRI2,EI3.6)') CRKL

WRITE (5,' (AIS,IP,EI3.6,A3)') '1/2 crack length = ',CRKL,'in'

READ (9,' (/////TRI2,11)') N90

NIS0 : N90"2

ARC = 180/N180 [ arc length (in degree) of a single element

WRITE (5,' (A30,I2)') 'Elements in 180-degree span = ',NIS0

WRITE (5,' (A28,FS.I,AS)') 'Arc length of each element =',ARC,

+'Degrees'

READ (9,' (/////TRI2,11)') IRING

WRITE (5,' (A33,II)') 'Number of rings to be computed = ',IRING

GOTO (11,36) MAT

C...Evaluate the full and reduced compliance matrices for the anisotropic

C material:

ii CALL STRUC(EM,GM,PRM)

WRITE (5,12) 'Structural Compliance Matrix [S] ',

+ ((CPL(I,J) ,a:l,6) , I:i,6)

12 FORMAT (/AS0/, 6 (6 (IP, El3.6, IX) /) )

WRITE (5,13) 'Reduced Structural Compliance Matrix "S 0" - ',

+((CPLR(I,J) ,a=l,5) ,I=i,5)

13 FORMAT (/A46/, 5 (5 (IP, El3.6, IX) /) )

WRITE (5,' (AIS,IP,EI2.5)') "Sqrt(s22'/sll') - ",

+SQRT(CPLR(2,2)/CPLR(I,I))

C...Solve for Storh eigenvalues:

CALL STROH(MU)

WRITE (5,21) 'Stroh Eigenvalues =', ((MU(M,N) ,N=I,2),M=I,3)

21 FORMAT (/A20/,3(2(' (',IP,EI3.6,' + ',IP,EI3.6,'i )',SX)/))

WRITE (5,22) 'p: ', (M, (P(M,N),N=I,2),M=I,2)

WRITE (5,22) 'q: ', (M, (Q(M,N),N=I,2),M=I,2)

22 FORMAT (A3/,2(II,2X,2(' (',IP,EI3.6,' + ',iP,El3.6,'i )',SX)/))

WRITE (5,23) 'kA2: ', (M,K2(M),M:I,3)

23 FORMAT (AS/,3(II,2X,' (',IP,EI3.6,' + ',iP,El3.6,'i )'/))

C...Calculate L 22 value, for later calculation of K I:

UPLUS = MU(I,I)+MU(2,1)

UPROD = MU(I,I)*MU(2,1)

A1 : DREAL(UPLUS)

A2 : DREAL(UPROD)

B : DIMAG(UPLUS)

D : DIMAG(UPROD)

AB : AI*D-A2*B

BL22I : CPLR(I,I)*AB

CPLN(1) = CPL(I,I)

CPLN(2) = CPL(I,3)

CPLN(3) = CPL(3,3)

m

[ sum of 2 eigenvalues

[ product of 2 eigenvalues

[ real part of UPLUS

[ real part of UPROD

[ imaginary part of UPLUS

[ imaginary part of UPROD

[ L inverse 22

[ compliance sll

[ compliance s13

[ compliance s33

BL21 : -D/(CPLR(I,I)*(B*AB-D**2)) [ L21

BL22 : B/(CPLR(I,I)*(B*AB-D**2)) [ L22

CPLN(1) = CPL(I,I) [ compliance sll

CPLN(2) = CPL(I,3) [ compliance s13

CPLN(3) = CPL(3,3) [ compliance s33

GOTO 40

C...For isotropic materials:

36 CPLN(1) = I/EX

CPLN(2) = -PR/EX

CPLN(3) = I/EX
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BL22 : EX/ (2* (I-PR**2))

C...Set Gauss integration point locations within an element:

40 CALL GUASS

SliP = CPLN(1)-CPLN(2)**2/CPLN(3) [ sll'

C...Calculate the equivalent domain integral and the interaction integral in

C every element:

DO 300 KR = I,IRING

DO 200 I : I,NSEG

C...Array initialization:

IF (KR .EQ. i) THEN

SIFINAVG(I,I) : 0

TIINAVG(I,I) = 0

TI3NAVG (I, i) = 0

T33NAVG(I,I) = 0

ENDIF

VEDI (I,KR) : 0

VII(I,KR) = 0

VI2(I,KR) = 0

IF (KR .EQ. i) THEN

EZZA(I) = 0

ENDIF

DO i00 J : I,NI80

CALL FERST(I,J)

[ KR: counter for the rings

[ I: counter for the element layers(segments)

[ initialization for later average calculation

[ J: counter for the elements in a segment

C...Set up auxiliary fields:

61 CALL AUXTI3(MU,ARC,MAT) [ auxiliary field for TI3

GOTO (62,63) MAT

62 CALL AUXAN(MU,ARC) [ auxiliary field for TII - anisotropic

GOTO 70

63 CALL AUXI(ARC) [ auxiliary field for TII - isotropic

C...Evaluate equivalent domain integral and interaction integral:

70 CALL INTEG(KR,I,J,XOJ,XIJ,X2J)

VEDI(I,KR) = VEDI(I,KR)+XOJ(KR, I,J) [ equivalent domain integral

VII(I,KR) = VII(I,KR)+XIJ(KR, I,J) [ interaction integral for TII

VI2(I,KR) = VI2(I,KR)+X2J(KR, I,J) [ interaction integral for TI3

C...Calculate average Ezz strain in every element on the crack front:

IF (KR .EQ. i) THEN

CALL STRN33(EZZ,J)

EZZA(I) = EZZA(I)+EZZ(J)

ENDIF

i00 CONTINUE

IF (KR .EQ. i) THEN

EZZA(I) = EZZA(I)/NI80

ENDIF

[ average over a layer(segment)

C...Calculate T-stress and K1 using interaction-integral approach.

ES = COORDL(5,3)-COORDL(I,3) [ element thickness

F : (2./3.)*ES
THICK(I,1) = (COORDL(I,3)+COORDL(5,3))/2

THICK(I,2) = THICK(I,I)/(PLZ/2)

THICK(I,3) : COORDL(I,3)/(PLZ/2)

VEDI(I,KR) : 2*VEDI(I,KR)/F

VII(I,KR) : 2*VII(I,KR)/F

VI2 (I,KR) = 2"V12 (I,KR)/F

GOTO (iii, 112) MAT

[ local "s" coordinate

[ normalized thickness

[ local "s" coordinate at

bottom of the element
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+

C... For

112

anisotropic materials:

SIFI(I,KR) = SQRT(2*VEDI(I,KR)/BL22I)

TII(I,KR) = I*(VII(I,KR)-EZZA(I)*CPL(I,3)/CPL(3,3) )/CPLR(I,I)

TI3 (I,KR) = VI2(I,KR)/CPLR(5,5)

T33 (I,KR) = (EZZA(I)- (CPL(I,3)*TII(I,KR)+CPL(3,5)*TI3 (I,KR)))/

CPL(3,3)

GOTO i13

isotropic materials:

SIFI ( I, KR) = SQRT (VEDI ( I, KR) *EX/ ( i- PR**2 ) )

TII(I,KR) = I*(EX/((I-PR**2)*FF))*(VII(I,KR)+FF*PR*EZZA(I))

TI3 (I,KR) = (EX/(2*(I+PR)) )*VI2(I,KR)

T33(I,KR) = EX*EZZA(I)+PR*TII(I,KR)

113 SIFIN(I,KR) = SIFI(I,KR)/(SINF*SQRT(PI*CRKL))

TIIN(I,KR) = TII(I,KR)/SINF

TI3N(I,KR) = TI3(I,KR)/SINF

T33N(I,KR) = T33(I,KR)/SINF

SIFINAVG(I,I) = SIFINAVG(I,I)+SIFIN(I,KR)

TIINAVG(I,I) = TIINAVG(I,I)+TIIN(I,KR)

TI3NAVG(I,I) = TI3NAVG(I,I)+TI3N(I,KR)

T33NAVG(I,I) = T33NAVG(I,I)+T33N(I,KR)

IF (KR .EQ. IRING) THEN [ average over rings

SIFINAVG(I,2) = SIFINAVG(I,I)/IRING

TIINAVG(I,2) = TIINAVG(I,I)/IRING

TI3NAVG(I,2) = TI3NAVG(I,I)/IRING

T33NAVG(I,2) = T33NAVG(I,I)/IRING

ENDIF

200 CONTINUE

300 CONTINUE

C...Output calculated T-stresses and KI data:

WRITE (12,301) 'SEGMENT','THICKNESS', (RING(K),K:I,IRING),'AVERAGE'

WRITE (13,301) 'SEGMENT','THICKNESS', (RING(K),K:I,IRING),'AVERAGE'

WRITE (24,301) 'SEGMENT','THICKNESS', (RING(K),K:I,IRING),'AVERAGE'

WRITE (25,301) 'SEGMENT','THICKNESS', (RING(K),K:I,IRING),'AVERAGE'

301 FORMAT (A7,1X,A9,4X,4(4X,A7,4X))

302 FORMAT (I4,4X,F9.6,6(2X,IP,EI3.6))

DO 310 I : I,NSEG

WRITE (12,302) I,THICK(I,2) , (SIFIN(I,K),K=I,IRING),SIFINAVG(I,2)

WRITE (13,302) I,THICK(I,2) , (TIIN(I,K) ,K=I,IRING) ,TIINAVG(I,2)

WRITE (24,302) I,THICK(I,2) , (TI3N(I,K) ,K=I,IRING) ,TI3NAVG(I,2)

WRITE (25,302) I,THICK(I,2) , (T33N(I,K) ,K=I,IRING) ,T33NAVG(I,2)

310 CONTINUE

999 STOP

END

SUBROUTINE S TRUC (YOUNG, SHEAR, P SNR)

* The subroutine computes the full and reduced compliance matrices. *

* --- Subroutine input: YOUNG, SHEAR,PSNR *

* --- Subroutine output: CPL,CPLR *

* --- Definition of local variables: *

* C(i,j) Array for the stiffness matrix. *

* C0(i,j) Array for the reduced stiffness matrix. *

* PSNR(i) Array for 3 Poisson's ratios. *

* SHEAR(i) Array for 3 shear moduli. *
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* YOUNG(i) Array for 3 Young's moduli. *

****************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /MATL/ CPL(6,6),CPLR(5,5) ,EX,PR

DIMENSION YOUNG(3) ,SHEAR(3) ,PSNR(3)

DIMENSION C(6,6) ,CO (5,5)

C...Construct the 6x6 compliance matrix [S] :

DO 915 I = 1,3

CPL(I,I) = I/YOUNG(I)

CPL(I+3,I+3) = I/SHEAR(I)

915 CONTINUE

CPL(2,1) = - (PSNR(3)/YOUNG(I))

CPL(I,2) = CPL(2,1)

CPL(3,1) = - (PSNR(2)/YOUNG(I))

CPL(I,3) = CPL(3,1)

CPL(3,2) = - (PSNR(1)/YOUNG(2))

CPL(2,3) = CPL(3,2)

C...Evaluate the 6x6 stiffness matrix [C] , the 5x5 reduced stiffness and the

C compliance matrices:

CALL DLINRG(6,CPL,6,C,6) [ IMSL Library for matrix inversion

DO 920 I : 1,5

DO 920 J : 1,5

IF ((I .NE. 3) .AND. (a .NE. 3)) THEN

C0(I,J) = C(I,J)

ELSEIF ((J .EQ. 3) .AND. (I .NE. 3)) THEN

C0(I,J) : C(I,6)

ELSEIF ((I .EQ. 3) .AND. (J .NE. 3)) THEN

C0(I,J) : C(6,J)

ENDIF

920 CONTINUE

C0(3,3) = C(6,6)

CALL DLINRG(5,C0,5,CPLR,5) [ IMSL Library for matrix inversion

RETURN

END

SUBROUTINE STROH (U)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* The subroutine determines the Stroh eigenvalues from the reduced *

* structural compliance matrix. *

* --- Subroutine input: CPLR *

* --- Subroutine output: U,K2,P,Q *

* --- Definition of local variables: *

* Al(i) Array for the 5 coefficients in solving the in-plane *

* characteristic equation. *

* U(m,n) Array for the Stroh eigenvalues, m=l..3, 3 pairs of eigenvalues*

* and m=3 indicates the out-of-plane eigenvalue, n=2 is the *

* conjugate of n=l. *

* Z(i) Array for the 4 roots of the in-plane characteristic equation. *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMPLEX (8) U, Z, D2, K2, P, Q, UPLUS, UMINU, UPROD

COMMON /MATL/ CPL(6,6) ,CPLR(5,5) ,EX,PR

COMMON /MUS/ UPLUS,UMINU,UPROD,B,D,K2(3) ,P(2,2) ,Q(2,2)

DIMENSION U(3,2) ,il(5) ,Z(4)

C...Solve for 4 in-plane eigenvalues:
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AI(1) : CPLR(2,2) [ coefficient for muA0: "s' 22"

AI(2) = -2*CPLR(2,3) [ coefficient for muAl: "-2*s' 26"

AI(3) = 2*CPLR(I,2)+CPLR(3,3) [ coefficient for mu_2

AI(4) = -2*CPLR(I,3) [ coefficient for mu_3: "-2*s' 16"

AI(5) = CPLR(I,I) [ coefficient for mu_4: "s' ii"

C...Use an IMSL Library to find the roots of a polynomial with real

C coefficients by Laguerre's method:

CALL DZPLRC (4,AI, Z)

U(l,l) = Z(1) [ "mul"

U(I,2) = Z(2) [ "mul bar"

U(2,1) : Z(3) [ "mu2"

U(2,2) = Z(4) [ "mu2 bar"

UMINU = U(I,I)-U(2,1) [ "mul-mu2"

C...Solve for 2 out-of-plane eigenvalues:

A2 : CPLR(5,5) [ coefficient for mu_2: "s' 55"

B2 : -2*CPLR(4,5) [ coefficient for muAl: "-2*s' 45"

C2 : CPLR(4,4) [ coefficient for mu_0: "s' 44"

D2 : B2**2-4*A2*C2

U(3,1) = (-B2+SQRT(D2))/(2*A2) [ "mu3"

U(3,2) : (-B2-SQRT(D2))/(2*A2) [ "mu3 bar"

C...Calculate p, q, and normalization factors k:

DO 935 N : 1,2

P(N,I) = CPLR(I,I)*U(N,I)**2-CPLR(I,3)*U(N,I)+CPLR(I,2)

P(N,2) = CONJG(P(N,I))

Q(N,I) = CPLR(I,2)*U(N,I)-CPLR(2,3)+CPLR(2,2)/U(N,I)

Q(N,2) = CONJG(Q(N,I))

K2(N) : I/(2*(Q(N,I)-U(N,I)*P(N,I)))

935 CONTINUE

K2 (3) = I/(2*(CPLR(4,4)/U(3,1) -CPLR(4,5)) ) [ k3_2

990 RETURN

END

[ "pl"

[ "pl_bar"

[ "ql "

[ "ql_bar"

[ klA2, k2A2

SUBROUTINE GUASS

* The subroutine defines the Gaussian integration point locations using *

* reduced 8-point rule. *

* --- Subroutine input: none *

* --- Subroutine output: RG, SG,TG *

* --- Definition of local variables: *

* PLI Integration point location. *

* RI,SI,TI Coeffecients for the integration point locations. *

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /GIP/ RG(8) ,SG(8),TG(8)

DIMENSION SI(8) ,TI(8) ,RI(8)

DATA RI /-i,i,i,-i,-i,i,i,-i/

DATA SI /-i,-i,i,i,-i,-i,i,i/

DATA TI /-i,-i,-i,-i,i,i,i,i/

PLI : I/SQRT(3.0) [ point location for integration

C...Set up 2x2x2 reduced Gaussian integration points:

DO i0 K : 1,8

RG(K) = PLI*RI(K)

SG(K) = PLI*SI(K)

TG(K) = PLI*TI(K)

i0 CONTINUE

RETURN

END
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SUBROUTINE FERST(KS,KE)

****************************************

* The subroutine reads strain, stress, and nodal data from ANSYS results.*

* Those data are stored in different arrays for later uses. *

* --- Subroutine input: data files 1,2,3,4 *

* --- Subroutine output: DISP,STRS,STRN,MIE,MNE,COORD,COORDL *

* --- Definition of local variables: *

* KE The element number in the layer(segment). *

* KS The element layer(segment) number along the crack front. *

* THETA Angular coordinate (in radians) of the nodal points. *

****************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

CHARACTER HEAD*40

COMMON PI,PL,HEAD

COMMON /FESOL/ DISP(21,3) ,STRS(8,6) ,STRN(8,6)

COMMON /FEMOD/ MIE(50,24) ,MNE(50,24,20) ,COORD(21,3) ,COORDL(20,3)

C...Read element-nodal data and sort by local node numbers:

READ (4,1001) MIE(KS,KE), (MNE(KS,KE,K),K=I,20)

i001 FORMAT (///////////////////2X, I6,TR21,816/TR29,816/TR29,

+416//////////////////) [ ANSYS 5.5 format

II : 0

READ (4,1003) NK, (COORD(21,J),J=I,3) [NK: node no. in the data file1002

1003 FORMAT (IX,17,2X,3EI2.5)

II = II+i

DO i010 I = 1,20

NI = MNE(KS,KE,I)

IF (NI .EQ. NK) THEN

DO 1005 J :i,3

COORD(I,J) = COORD (21, J)

1005 CONTINUE

IF (II .LT. 20) GOTO 1002

ENDIF

i010 CONTINUE

[ I: local node no.

[ NI: global node no.

C...Convert local cylindrical nodal coordinates to local Cartesian coordinates:

DO 1020 I : 1,20 [ I: local node no.

THETA = COORD(I,2)*PI/180

COORDL(I,I) = COORD(I,I)*COS(THETA) [ xl-coordinate

COORDL(I,2) = COORD(I,I)*SIN(THETA) [ x2-coordinate

COORDL(I,3) = COORD(I,3) [ x3-coordinate

1020 CONTINUE

C...Read stress data within an element:

READ (1,1021) (STRS(I,J),J=I,6)

1021 FORMAT (////9X,6EI2.5) [ ANSYS 5.5 format

1023 FORMAT (9X,6EI2.5)

DO 1030 I : 2,8

READ (1,1023) (STRS(I,J) ,a=l,6)

1030 CONTINUE

C...Read strain data within an element:

READ (2,1021) (STRN(I,J),J=I,6)

DO 1040 I : 2,8

READ (2,1023) (STRN(I,J) ,a=l,6)

1040 CONTINUE

C...Sort stress and strain data in consistent with the stress and strain
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C vectors, i.e. [sigma]=[Sxx, Syy,Szz,Syz,Sxz,Sxy] and similar to strains:

DO 1050 I :i,8

SXY = STRS(I,4)

STRS(I,4) = STRS 1,5)

STRS(I,5) = STRS 1,6)

STRS(I,6) = SXY

EXY = STRN(I,4)

STRN(I,4) = STRN 1,5)

STRN(I,5) = STRN 1,6)

STRN(I,6) = EXY

1050 CONTINUE

C...Read displacement data within an element and sort by local node numbers:

1051 READ (3,' (A40)') HEAD

II : 0

1052 READ (3,1053) NK, (DISP(21,J) ,J=l,3) [NK: node no. in the data file

1053 FORMAT (IX,I7,1X,3EI2.5)

II : II+l

DO 1060 I : 1,20 [ I: local node no.

NI : MNE(KS,KE,I) [ NI: global node no.

IF (NK .EQ. NI) THEN

DO 1055 J :i,3

DISP(I,J) = DISP(21,J)

1055 CONTINUE

IF (II .LE. 19) GOTO 1052

ENDIF

1060 CONTINUE

ii00 RETURN

END

SUBROUTINE AUXT 13 (U, AL, MAT)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* The subroutine calculates the auxiliary stress, strain, and displacement*

* fields under a line load f3 applying on the crack front, in order to *

* calculate the TI3 stresses later. *

* --- Subroutine input: U,AL,MAT *

* --- Subroutine output: ASTRSI3,ASTRNI3,ADISPI3 *

* --- Definition of local variables: *

* AL Arc length (in degrees) of a single element. *

* R Radial coordinate of the integration or nodal points. *

* RE Element size in r-direction. *

* SR3 (i) r-3 stresses on the 8 integration points. *

* THETAD Angular coordinate (in degrees) of the integration or nodal *

* points. *

* U(i) Stroh eigenvalues, i=1,2,3. *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMPLEX(8) U(3,2) ,P,Q,XI3,OMEGA3,K2,UPLUS,UMINU,UPROD

PARAMETER (FF : i)

COMMON PI, PL, HEAD

COMMON /AUXI3/ ASTRSI3(8,6) ,ASTRNI3 (8,6) ,ADISPI3 (20 3)

COMMON /FEMOD/ MIE (50,24 ) , MNE (50,24,20 ) , COORD (2 i, 3 ) COORDL (20,3 )

COMMON /MATL/ CPL(6,6) ,CPLR(5,5) ,EX,PR

COMMON /MUS/ UPLUS, UMINU, UPROD, B, D, K2 (3) , P (2,2) , Q (2 2 )

DIMENSION JR(8) ,JS(8)

DIMENSION SR3(8)

DOUBLE PRECISION MU

DATA JR /i,i,-i,-i,i,i,-i,-i/
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DATA JS /-1,1,1,-1,-1,1,1,-1/

RE = COORD(I,I)-COORD(4,1)

GOTO (1302,1351) MAT [ determine anisotropic or isotropic material

C...For anisotropic material:

1302 MU = (CPLR(4,4)*CPLR(5,5)-CPLR(4,5)**2)**(-0.5)

DO 1320 L : 1,8 [ L: counter for the integration points

R = COORD(L,I)- (I-PL)*(RE/2)*JR(L)

THETAD = COORD(L,2)- (I-PL)*(AL/2)*aS(L)

XI3 = COSD(THETAD)+U(3,1)*SIND(THETAD)

OMEGA3 = (-SIND(THETAD)+U(3,1)*COSD(THETAD))/XI3

A1 = REAL (K2 (3) *OMEGA3)

SR3(L) = FF*AI/(PI*MU*R) [ "Sr3"

C...Compute Cartesian stress components:

ASTRSI3(L,I = 0 [ "Sxx"

ASTRSI3(L,2 : 0 [ "Syy"

ASTRSI3(L,3 : 0 [ "Szz"

ASTRSI3(L,4 : SIND(THETAD)*SR3 (L) [ "Syz"

ASTRSI3(L,5 = COSD(THETAD)*SR3 (L) [ "Sxz"

ASTRSI3(L,6 : 0 [ "Sxy"

C...Compute engineering strains:

DO 1310 I : 1,6

ASTRNI3 (L, I) : 0

DO 1310 J : 1,6

ASTRNI3(L,I) = ASTRNI3(L,I)+CPL(I,J)*ASTRSI3(L,J)

1310 CONTINUE

C...Convert engineering strains to tensorial strains:

ASTRNI3 (L,4) = ASTRNI3 (L,4) /2

ASTRNI3(L,5) = ASTRNI3 (L,5)/2

ASTRNI3(L,6) = ASTRNI3 (L,6)/2

1320 CONTINUE

C...Compute displacements:

DO 1330 I : 1,20 [ I: counter for the local nodes

R = COORD(I,I)

THETAD : COORD(I,2)

XI3 = COSD(THETAD)+U(3,1)*SIND(THETAD)

ADISPI3(I,I) = 0 [ "ul"

ADISPI3(I,2) = 0 [ "u2"

ADISPI3(I,3) = -FF*(LOG(R)+REAL(LOG(XI3) ))/(2*PI*MU) ["u3"

1330 CONTINUE

GOTO 1400

C...For isotropic material:

1351 DO 1370 L = 1,8

R = COORD(L,I)-(I-PL)*(RE/2)*JR(L)

THETAD = COORD(L,2)- (I-PL)*(AL/2)*aS(L)

SR3(L) = -FF/(2*PI*R) [ "Sr3"

C...Compute Cartesian stress components:

ASTRSI3(L,I : 0

ASTRSI3(L,2 :

ASTRSI3(L,3 :

ASTRSI3(L,4 :

ASTRSI3(L,5 :

ASTRSI3(L,6 :

C...Compute tensorial

ASTRNI3(L,I)

ASTRNI3(L,2)

ASTRNI3(L,3)

ASTRNI3(L,4)

0

0

-FF*SIND (THETAD) / (2*PI*R)

-FF*COSD (THETAD) / (2*PI*R)

0

strains :

[ S XX"

! S yy"

[ Szz"

[ Syz "

[ Sxz "

[ S xy"

(ASTRSI3(L,I)-PR*(ASTRSI3(L,2)+ASTRSI3(L,3)))/EX [ "Exx"

(ASTRSI3(L,2)-PR*(ASTRSI3(L,I)+ASTRSI3(L,3)))/EX [ "Eyy"

(ASTRSI3(L,3)-PR*(ASTRSI3(L,I)+ASTRSI3(L,2)))/EX [ "Ezz"

(I+PR)/EX*ASTRSI3(L,4) [ "Eyz"
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1370

1380

ASTRNI3(L,5) (I+PR)/EX*ASTRSI3(L,5)

ASTRNI3(L,6) (I+PR)/EX*ASTRSI3(L,6)

CONTINUE

DO 1380 I : 1,20

R = COORD(I i)

ADISPI3(I,I : 0

ADISPI3(I,2 : 0

ADISPI3(I,3 = -FF*(I+PR)*LOG(R)/(PI*EX)

CONTINUE

[ "ul "

[ "u2 "

[ "u3 "

1400 RETURN

END

SUBROUTINE AUXAN(U,AL)

****************************************

* The subroutine calculates the auxiliary stress, strain, and displacement*

* fields under a line load fl applying on the crack front, for an anisotropic*

* material according to the Stroh formalism with the normalization factor k. *

* The auxiliary fields are later used to determine TII stresses. *

* --- Subroutine input: U,AL *

* --- Subroutine output: ASTRS,ASTRN,ADISP *

* --- Definition of local variables: *

* AL Arc length (in degrees) of a single element. *

* R Radial coordinate of the integration or nodal points. *

* RE Element size in r-direction. *

* SRR(i) r-r stresses on the 8 integration points. *

* THETAD Angular coordinate (in degrees) of the integration or nodal *

* points. *

* U(i) Stroh eigenvalues, i=1,2,3. *

****************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMPLEX(8) U(B,2),P,Q,XI(2) ,OMEGA(2),K2,UPLUS,UMINU,

+UPROD,DL (2,2) ,S(2,2)

PARAMETER (FF : i)

COMMON PI,PL,HEAD

COMMON /AUX/ ASTRS(8,6) ,ASTRN(8,6) ,ADISP(20,3)

COMMON /FEMOD/ MIE(50,24) ,MNE(50,24,20) ,COORD(21,3) ,COORDL(20,3)

COMMON /MATL/ CPL(6,6),CPLR(5,5) ,EX,PR

COMMON /MUS/ UPLUS,UMINU,UPROD,B,D,K2(3),P(2,2),Q(2,2)

DIMENSION JR(8) ,JS(8)

DIMENSION SRR(8)

DATA JR /i,i,-i,-i,i,i,-i,-i/

DATA JS /-i,i,i,-i,-i,i,i,-i/

RE = COORD (1,1)-COORD (4,1)
DO 1320 L : 1,8 [ L: counter for the integration points

R : COORD(L,I)- (I-PL)*(RE/2)*JR(L)

THETAD : COORD(L,2)- (I-PL)*(AL/2)*JS(L)

XI(1) = COSD(THETAD)+U(I,I)*SIND(THETAD)

XI(2) = COSD(THETAD)+U(2,1)*SIND(THETAD)

OMEGA(I) : (-SIND(THETAD)+U(I,I)*COSD(THETAD))/XI(1)

OMEGA(2) : (-SIND(THETAD)+U(2,1)*COSD(THETAD))/XI(2)

DL(I,I) = K2(1)*U(I,I)**2*OMEGA(1)+K2(2)*U(2,1)**2*OMEGA(2)

DL (i ,2) = -K2 (i) *U(l, i) *OMEGA(I) -K2 (2) *U(2, i) *OMEGA(2)

DL(2,1) = DL(I,2)

DL (2,2) = K2 (i) *OMEGA(I) +K2 (2) *OMEGA(2)

A1 = REAL (COSD (THETAD) * (B*DL (i, i) +D*DL (1,2)) +SIND (THETAD) *

+ (B*DL (2, i) +D*DL (2 , 2) ) )
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SRR(L) = FF*CPLR(I,I)*AI/(PI*R) [ "Srr"

C...Compute Cartesian stress components:

ASTRS(L,I) = FF*CPLR(I,I)*COSD(THETAD)**2/(PI*R)*AI [ "Sxx"

ASTRS(L,2) = FF*CPLR(I,I)*SIND(THETAD)**2/(PI*R)*AI [ "Syy"

ASTRS(L,3) = -FF*CPLR(I,I)*(CPL(I,3)*COSD(THETAD)**2+CPL(2,3)

+ *SIND(THETAD) **2) / (PI*R*CPL(3,3)) *AI [ "Szz"

ASTRS(L,4) = 0 [ "Syz"

ASTRS(L,5) = 0 [ "Sxz"

ASTRS(L,6) = FF*CPLR(I,I)*SIND(THETAD)*COSD(THETAD)/(PI*R)*AI [ "Sxy"

C...Compute engineering strains:

DO 1310 I : 1,6

ASTRN(L,I) = 0

DO 1310 J : 1,6

ASTRN(L,I) = ASTRN(L,I)+CPL(I,J)*ASTRS(L,J)

1310 CONTINUE

C...Convert engineering strains to tensorial strains:

ASTRN(L,4) = ASTRN(L,4)/2

ASTRN(L,5) = ASTRN(L,5)/2

ASTRN(L,6) = ASTRN(L,6)/2

1320 CONTINUE

C...Compute displacements:

DO 1330 I : 1,20 [ I: counter for the local nodes

R = COORD(I,I)

THETAD : COORD(I,2)

XI(1) = COSD(THETAD)+U(I,I)*SIND(THETAD)

XI(2) = COSD(THETAD)+U(2,1)*SIND(THETAD)

S(I,I) = -K2(1)*U(I,I)*P(I,I)*LOG(XI(1)) -K2 (2)*U(2,1)*P(2,1)*

+ LOG(XI(2) )

S(I,2) = K2 (1)*P(I,I)*LOG(XI(1))+K2(2)*P(2,1)*LOG(XI(2))

S(2,1) = -K2(1)*U(I,I)*Q(I,I)*LOG(XI(1)) -K2 (2)*U(2,1)*Q(2,1)*

+ LOG(XI(2) )

S(2,2) = K2 (1)*Q(I,I)*LOG(XI(1))+K2(2)*Q(2,1)*LOG(XI(2))

ADISP(I,I) = -FF*CPLR(I,I)*(B*LOG(R)+2*REAL(B*S(I,I)+D*S(I,2)))/

+ (2*PI) [ "ul"

ADISP(I,2) = -FF*CPLR(I,I)*(D*LOG(R)+2*REAL(B*S(2,1)+D*S(2,2)))/

+ (2*PI) [ "u2"

ADISP(I,3) = 0 [ "u3"

1330 CONTINUE

1400 RETURN

END

SUBROUTINE AUXI(AL)

****************************************

* The subroutine calculates the auxiliary stress, strain, and displacement*

* fields under a line load applying on the crack front, for an isotropic *

* material. The auxiliary fields are later used to determine TII stresses. *

* --- Subroutine input: AL *

* --- Subroutine output: ASTRS,ASTRN,ADISP *

* --- Definition of local variables: *

* AL Arc length (in degrees) of a single element. *

* RE Element size in r-direction. *

* THETA Angular coordinate (in radians) of the integration or nodal *

* points. *

* THETAD Angular coordinate (in degrees) of the integration or nodal *

* points. *

****************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

PARAMETER (FF : i)
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1310

1320

1400

COMMON Pl, PL, HEAD

COMMON /AUX/ ASTRS(8,6) ,ASTRN(8,6) ,ADISP(20,3)

COMMON /FEMOD/ MIE(50,24) ,MNE(50,24,20) ,COORD(21,3) ,COORDL(20,3)

COMMON /MATL/ CPL(6,6) ,CPLR(5,5) ,EX,PR

DIMENSION aXl(8) ,ax2(8)

DATA JXI /i,i,-i,-i,i,i,-i,-i/

DATA JX2 /-i,i,i,-i,-i,i,i,-i/

RE = COORD(I,I)-COORD(4,1) t element size in r-direction

DO 1310 L : 1,8 [ L: counter for the integration points

R = COORD(L,I)-(I-PL)*(RE/2)*JXI(L)

THETAD = COORD(L,2)- (I-PL)*(AL/2)*JX2(L)

ASTRS(L,I) = -FF*COSD(THETAD)**3/(PI*R)

ASTRS(L,2) = -FF*COSD(THETAD)*SIND(THETAD)**2/(PI*R)

ASTRS(L,3) = -FF*PR*COSD(THETAD)/(PI*R) [

ASTRS(L,4) = 0 [

ASTRS(L,5) = 0 [

ASTRS(L,6) = -FF*COSD(THETAD)**2*SIND(THETAD)/(PI*R) [

ASTRN(L,I) = (ASTRS(L,I)-PR*(ASTRS(L,2)+ASTRS(L,3)))/EX

ASTRN(L,2) = (ASTRS(L,2)-PR*(ASTRS(L,I)+ASTRS(L,3)))/EX

ASTRN(L,3) = (ASTRS(L,3)-PR*(ASTRS(L,I)+ASTRS(L,2)))/EX

ASTRN(L,4) = (I+PR)/EX*ASTRS(L,4)

ASTRN(L,5) = (I+PR)/EX*ASTRS(L,5)

ASTRN(L,6) = (I+PR)/EX*ASTRS(L,6)

CONTINUE

[ SXX"

t Syy"

Szz"

Syz "

Sxz "

Sxy"

t

t

t

t "Eyz"

[ "EXZ "

t "Exy"

" EXX"

" EFF"

"Ezz"

DO 1320 I = 1,20

R = COORD(I,I)

THETA = COORD(I,2)*PI/180

ADISP(I,I) = -FF*(I-PR**2)*(LOG(R)+SIN(THETA)**2/(2*(I-PR)))/

(PI*EX) [ "ul"

ADISP(I,2) =

(2*PI*EX)

ADISP(I,3) =

CONTINUE

RETURN

END

-FF* (I+PR) * ((I-2*PR) *THETA-SIN (THETA) *COS (THETA)) /

[ "u2 "

0 [ "u3 "

SUBROUTINE INTEG (KR, KS, KE, VEDI, VI I, VI 2 )

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

The subroutine calculates the terms necessary for local interaction *

integral and equivalent domain integral of each element. *

--- Subroutine input: KR,KS,KE *

--- Subroutine output: VEDI,VII,VI2 *

--- Definition of local variables: *

ADUXI(i,j) Array for the derivatives of the j-th auxiliary displacement *

component in calculating TII, w.r.t, the local xl coordinate at*

the i-th integration point, j=l:ul; j=2:u2; j=3:u3. *

ADUXII3(i j) Array for the derivatives of the j-th auxiliary *

displacement component in calculating TI3, w.r.t, the *

local xl coordinate at the i-th integration point, j=l:ul;*

j=2:u2; j=3 :u3. *

ASIGMA(i,j 3x3 array for the auxiliary stress tensor of the element in *

calculating TII. *

ASIGMAI3(i,j) 3x3 array for the auxiliary stress tensor of the element *

in calculating TI3. *

Cl(i) Coefficients for each of the 6 stress-work density terms in the*

calculation of the interaction integral. *
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* CEDI(i) Coefficients for each of the 6 stress-work density terms in the*

* calculation of the equivalent domain integral. *

* DSHAP(i,j) Array for the derivative of the i-th shape function w.r.t, the *

* local coordinate j. j=l:xl; j=2:x2; j=3:x3. *

* DSRST(i,j) Array for the derivatives of the s-function w.r.t, the natural *

* coordinates j at the i-th integration point, j=l:xi; j=2:eta; *

* j=3:zeta. *

* DSX(i,j) Array for the derivatives of the s-function w.r.t, the local *

* coordinates j at the i-th integration point, j=l:xl; j=2:x2; *

* j=3:x3. *

* DUXI(i,j) Array for the derivatives of the j-th displacement component *

* w.r.t, the local xl coordinate at the i-th integration point. *

* j=l:ul; j=2:u2; j=3:u3. *

* KE The element number in the ring. *

* KR The ring number. *

* KS The element layer(segment) number along the crack front. *

* RX(i,j) Inverse of the Jacobian. i=i..3; j=l..3 *

* SF(i) s-function at the i-th integration point, i=i..8. *

* SIGMA(i,j) 3x3 array for the stress tensor of the element. *

* TERMEDI(i,j) Array for the terms in the expression of the equivalent *

* domain integral, i:l: ist term; i:2: 2nd term. *

* TERMI2(i,j) Array for the terms in the expression of the interaction *

* integral I(2) . i=l: ist term; i=2: 2nd term. *

* TERMII(i,j) Array for the terms in the expression of the interaction *

* integral I(1) . i=l: ist term; i=2: 2nd term. *

* WEDI(k) Array for the stress-work density at the k-th integration point*

* for equivalent domain integral. *

* WI2(k) Array for the stress-work density at the k-th integration point*

* in the calculation of the interaction integral I(2) . *

* WII(k) Array for the stress-work density at the k-th integration point*

* in the calculation of the interaction integral I(1) . *

* VEDI(i,j,k) Array for the value of the equivalent domain integral of the *

* k-th element in the (i+l)-th ring of the j-th layer(segment). *

* VI2(i,j,k) Array for the value of the interaction integral I(2), for TI3 *

* stresses, of the k-th element in the (i+l)-th ring of the j-th *

* layer(segment). *

* VII(i,j,k) Array for the value of the interaction integral I(1), for TII *

* stresses, of the k-th element in the (i+l)-th ring of the j-th *

* layer(segment). *

* XRJ Determinant of the Jacobian. *

****************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON PI,PL,HEAD

COMMON /AUX/ ASTRS(8,6) ,ASTRN(8,6) ,ADISP(20,3)

COMMON /AUXI3/ ASTRSI3(8,6) ,ASTRNI3(8,6),ADISPI3(20,3)

COMMON /FESOL/ DISP(21,3) ,STRS(8,6) ,STRN(8,6)

COMMON /FEMOD/ MIE(50,24) ,MNE(50,24,20) ,COORD(21,3) ,COORDL(20,3)

COMMON /GIP/ RG(8) ,SG(8),TG(8)

DIMENSION SF(8),DSRST(8,3),DSX(8,3) ,DUXI(8,3),SIGMA(3,3)

DIMENSION DSHAP(20,3) ,RX(3,3)

DIMENSION ASIGMA(3,3) ,ASIGMAI3(3,3) ,ADUXI(8,3) ,ADUXII3(8,3)

DIMENSION CEDI(6) ,TERMEDI(8,2) ,VEDI(4,50,24) ,WEDI(8)

DIMENSION CI(6),TERMII(8,2) ,VII(4,50,24),WII(8)

DIMENSION TERMI2 (8,2) ,VI2 (4,50,24) ,W12(8)

DATA CEDI /0.5,0.5,0.5,1,1,1/

DATA C1 /1,1,1,2,2,2/

C...Initialization:

VEDI(KR,KS,KE) = 0

VII(KR,KS,KE) : 0
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1105

iii0

VI2(KR,KS,KE) = 0

DO iii0 K = 1,8

WEDI (K) = 0

WII(K) = 0

WI2 (K) = 0

TERMEDI (K, I) = 0

TERMII (K, i) = 0

TERMI2 (K, i) = 0

DO 1105 KI = 1,3

DSX(K,KI) = 0

DUXI(K, KI) = 0

ADUXI(K,KI) = 0

ADUXII3(K, KI) = 0

CONTINUE

CONTINUE

[ K: counter for the integration points

[ KI: counter for the local coordinates xl to x3

C...DO-Loop #1199 - Sum over 8 integration points:

DO 1199 LI : 1,8 [ LI: counter for the integration point

CALL SHPF(DSHAP,XRJ,RX,LI,RG, SG,TG)

C...Define s-function and its derivatives:

SF(LI) = 0.5*(I+SG(LI))*(I-TG(LI)**2) [ s(xi,eta,zeta)

DSRST(LI,I) = 0. [ ds/d(xi)

DSRST(LI,2) = 0.5*(I-TG(LI)**2) [ ds/d(eta)

DSRST(LI,3) = -I*(I+SG(LI))*TG(LI) [ ds/d(zeta)

DO 1120 KI : 1,3

DO 1120 KJ : 1,3

DSX(LI,KI) = DSX(LI,KI)+RX(KI,KJ)*DSRST(LI,KJ)

1120 CONTINUE

C...Calculate the stress-work density W for the equivalent domain integral and

C the interaction integral:

DO 1130 K : 1,6

WEDI(LI) = WEDI(LI)+CEDI(K)*STRS(LI,K)*STRN(LI,K)

WII(LI) = WII(LI)+CI(K)*STRS(LI,K)*ASTRN(LI,K)

WI2(LI) = WI2(LI)+CI(K)*STRS(LI,K)*ASTRNI3(LI,K)

1130 CONTINUE

C...Calculate [du/dxl] and [du/dxl] a terms:

DO 1140 KI : 1,3

DO 1135 KN : 1,20 [ BIN: counter for the local nodes

DUXI(LI,KI) = DUXI(LI,KI)+DSHAP(KN,I)*DISP(KN,KI)

ADUXI(LI,KI) = ADUXI(LI,KI)+DSHAP(KN,I)*ADISP(KN,KI)

ADUXII3(LI,KI) = ADUXII3(LI,KI)+DSHAP(KN,I)*ADISPI3(KN,KI)

1135 CONTINUE

1140 CONTINUE

C...Construct the stress tensors:

DO 1150 KI : 1,3

DO 1145 KJ : 1,3

IF (KI .EQ. KJ) THEN

SIGMA(KI,KJ) = STRS(LI,KI)

ASIGMA(KI,KJ) = ASTRS(LI,KI)

ASIGHA13(KI,KJ) = ASTRS13(LI,KI)

ELSE

SIGMA(KI,KJ) = STRS(LI,9-KI-KJ)

ASIGMA(KI,KJ) : ASTRS(LI,9-KI-KJ)

ASIGMAI3(KI,KJ) : ASTRSI3(LI,9-KI-KJ)

ENDIF

1145 CONTINUE

1150 CONTINUE

C...Calculate the first terms of the equivalent domain integral and the

C interaction integrals:

C EDI- (du/dxl)*sigma*(dS/dx) <TERMEDI(LI,I)>
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C II - (du/dxl)_a*sigma*(dS/dx)+(du/dxl)*sigma_a*(dS/dx) <TERMII(LI,I) >

DO 1160 KI : 1,3

DO 1160 KJ : 1,3

TERMEDI(LI,I) = TERMEDI(LI,I)+

+ DUXI(LI,KI)*SIGMA(KI,KJ)*DSX(LI,KJ)

TERMII(LI,I) = TERMII(LI,I)+(ADUXI(LI,KI)*SIGMA(KI,KJ)+

+ DUXI(LI,KI)*ASIGMA(KI,KJ) )*DSX(LI,KJ)

TERMI2(LI,I) = TERMI2(LI,I)+(ADUXII3(LI,KI)*SIGMA(KI,KJ)+

+ DUXI(LI,KI)*ASIGMAI3 (KI,KJ))*DSX(LI,KJ)

1160 CONTINUE

C...Calculate the second terms of the equivalent domain integral and the

C interaction integrals - W*(dS/dxl) :

TERMEDI(LI,2) = WEDI(LI)*DSX(LI,I)

TERMII(LI,2) = WII(LI)*DSX(LI,I)

TERMI2(LI,2) = WI2(LI)*DSX(LI,I)

C...Calculate the integrals for the element:

VEDI(KR,KS,KE) = VEDI(KR,KS,KE)+(TERMEDI(LI,I)-TERMEDI(LI,2))*XRJ

VII(KR,KS,KE) = VII(KR,KS,KE)+(TERMII(LI,I)-TERMII(LI,2))*XRJ

VI2(KR,KS,KE) = VI2(KR,KS,KE)+(TERMI2(LI,I) -TERMI2(LI,2) )*XRJ

1199 CONTINUE

1200 RETURN

END

SUBROUTINE SHPF(DSHP,XSJ, SX,L,RG,SG,TG)

****************************************

* The subroutine forms the shape functions and their derivatives for the *

* 20-node 3-D solid element. The orientation of the local nodes 1 to 20 is *

* based on the ANSYS SOLID95 element type. *

* Ref.: I.M. Smith & D.V. Griffiths, Programming the Finite Element Method, *

* pp.432-433. John Wiley & Sons, 1988. *

* --- Subroutine input: L,RG,SG,TG *

* --- Subroutine output: DSHP,XSJ,SX *

* --- Definition of local variables: *

* DER(i j) Array for the derivative of the i-th shape function w.r.t, the *

* natural coordinate j. j=l:xi; j=2:eta; j=3:zeta. *

* FUN(i Array for the shape function of the i-th node w.r.t, the *

* natural coordinates. *

* IR(i) IS(i),IT(i) Arrays for the natural coodinates of the i-th node. *

* L Counter for the integration points. *

* SX(i,j) The inverse of the Jacobian. *

* XS(i,j) The Jacobian. *

* XSJ The determinant of the Jacobian. *

****************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /FEMOD/ MIE(50,24) ,MNE(50,24,20) ,COORD(21,3) ,COORDL(20,3)

DIMENSION IS(20),IT(20),mR(20),SG(8) ,TG(8) ,RG(8)

DIMENSION FUN(20) ,DER(20,3) ,XS(3,3) ,SX(3,3) ,DSHP(20,3)

DATA IR /-i,i,i,-i,-i,i,i,-i,0,i,0,-i,0,i,0,-i,-i,i,i,-i/

DATA IS /-i,-i,i,i,-i,-i,i,i,-i,0,i,0,-i,0,i,0,-i,-i,i,i/

DATA IT /-i,-i,-i,-i,i,i,i,i,-i,-i,-i,-i,i,i,i,i,0,0,0,0/

C...Define shape functions and their derivatives for each node:

DO 1205 I : 1,20 [ I: counter for the local node numbers

R = RG(L)*mR(I)

S = SG(L)*IS(I)

T = TG(L)*IT(I)

IF (IR(I) .EQ. 0) THEN [ local nodes 9,11,13,15

FUN(I) = 0.25*(I-RG(L)**2)*(I+S)*(I+T)
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DER(I,I) : -0.5*RG(L)*(I+S)*(I+T)

DER(I,2) : 0.25*IS(I)*(I-RG(L)**2)*(I+T)

DER(I,3) = 0.25*IT(I)*(I-RG(L)**2)*(I+S)

ELSEIF (IS(I) .EQ. 0) THEN [ local nodes 10,12,14,16

FUN(I) = 0.25*(I+R)*(I-SG(L)**2)*(I+T)

DER(I,I) = 0.25*IR(I)*(I-SG(L)**2)*(I+T)

DER(I,2) = -0.5*SG(L)*(I+R)*(I+T)

DER(I,3) = 0.25*IT(I)*(I+R)*(I-SG(L)**2)

ELSEIF (IT(I) .EQ. 0) THEN [ local nodes 17,18,19,20

FUN(I) = 0.25*(I+R)*(I+S)*(I-TG(L)**2)

DER(I,I) = 0.25*IR(I)*(I+S)*(I-TG(L)**2)

DER(I,2) = 0.25*IS(I)*(I+R)*(I-TG(L)**2)

DER(I,3) = -0.5*TG(L)*(I+R)*(I+S)

ELSE [ local nodes 1,2,3,4,5,6,7,8

FUN(I) = 0.125*(I+R)*(I+S)*(I+T)*(R+S+T-2)

DER(I,I) = 0.125*IR(I)*(I+S)*(I+T)*(2*R+S+T-I

DER(I,2) = 0.125*IS(I)*(I+R)*(I+T)*(R+2*S+T-I

DER(I,3) = 0.125*IT(I)*(I+R)*(I+S)*(R+S+2*T-I

ENDIF

1205 CONTINUE

C...Construct the Jacobian, its determinant and the inverse of the Jacobian:

DO 1210 I : 1,3

DO 1210 J : 1,3

XS(I,J) = 0

DO 1210 K : 1,20

XS(I,J) = XS(I,J)+COORDL(K,J)*DER K,I) [ Jacobian

1210 CONTINUE

CALL MINV(SX,XSJ,XS)

C...Form derivatives of the shape functions in global coordinates.

DO 1230 I : 1,20

DO 1230 J : 1,3

DSHP(I,J) = 0

DO 1230 K : 1,3

DSHP(I,J) = DSHP(I,J)+SX(J,K)*DER(I,K)

1230 CONTINUE

1300 RETURN

END

SUBROUTINE MINV(AINV,DET,A)

****************************************

* The subroutine calculates the determinant of a 3x3 matrix, and forms its*

* inverse matrix. A standard Gauss-Jordan elimination algorithm is used. *

* Ref.: G.J. Borse, FORTRAN 77 and Numerical Methods for Engineers, pp.429- *

* 432. PWS Publishers, 1985. *

* --- Subroutine input: A *

* --- Subroutine output: AINV,DET *

* --- Definition of local variables: *

* A The input matrix. *

* AINV The inverse of A. *

* DET The determinant of A. *

****************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION A(3,3),AINV(3,3),B(3,3)

DO 1 I : 1,3

DO 1 J : 1,3

B(I,J) = i(I,a)

IF (I .EQ. J) THEN

AINV(I,J) = 1
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ELSE

AINV(I,J) = 0

ENDIF

1 CONTINUE

DO i0 IPASS : 1,3 [ IPASS: counter for the current pivot row

C...For each pass, find the maximum element in the pivot row:

IMX : IPASS

DO 2 IROW : IPASS,3

IF (ABS(B(IROW,IPASS)) .GT. ABS(B(IMX,IPASS))) THEN

IMX : IROW

ENDIF

2 CONTINUE

C...Interchange the elements of row IPASS and row IMX in both B and AINV:

IF (IMX .NE. IPASS) THEN

DO 4 ICOL : 1,3

TEMP : AINV(IPASS,ICOL)

AINV(IPASS,ICOL) : AINV(IMX,ICOL)

AINV(IMX, ICOL) : TEMP

IF (ICOL .GE. IPASS) THEN

TEMP : B(IPASS,ICOL)

B(IPASS,ICOL) = B(IMX,ICOL)

B(IMX,ICOL) : TEMP

ENDIF

4 CONTINUE

ENDIF

PIVOT : B(IPASS,IPASS) [ the current pivot

C...Normalize the pivot row by dividing across by the current pivot:

DO 6 ICOL : 1,3

AINV(IPASS,ICOL) : AINV(IPASS,ICOL)/PIVOT

IF (ICOL .GE. IPASS) THEN

B(IPASS,ICOL) = B(IPASS,ICOL)/PIVOT

ENDIF

6 CONTINUE

C...Replace each row by the row plus a multiple of the pivot row with the

C factor chosen so that the element of [B] in the pivot column is 0:

DO 8 IROW : 1,3

IF (IROW .NE. IPASS) THEN

FACTOR : B(IROW,IPASS) [ set the factor for this row

ENDIF

DO 7 ICOL : 1,3

IF (IROW .NE. IPASS) THEN

AINV(IROW, ICOL) : AINV(IROW, ICOL)-FACTOR*AINV(IPASS,ICOL)

B(IROW,ICOL) : B(IROW,ICOL)-FACTOR*B(IPASS,ICOL)

ENDIF

7 CONTINUE

8 CONTINUE

i0 CONTINUE

DET = A(I,I)*A(2,2)*A(3,3)-A(I,I)*A(2,3)*A(3,2)+

+A(I,2)*A(2,3)*A(3, i) -A(I,2) *A(2, i) *A(3,3) +

+A(1,3)*A(2,1)*A(3,2)-A(1,3)*A(2,2)*A(3,1)

RETURN

END

SUBROUTINE STRN33(E33,KE)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* The subroutine calculates the average Ezz strain of a wedge-shaped *

* element from the finite element result. *

* --- Subroutine input: KE, data file 8 *

* --- Subroutine output: E33 *
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* --- Definition of local variables: *

* KE The element number in the layer(segment). *

* E33(i) Array for the average Ezz strain of the i-th element. *

* STRNZZ(i,j) Array for the FE result of strains within a wedge-shaped *

* element, which is attached on the crack front. The i-th row *

* stores strain components at the i-th Gaussian integration *

* point, i:i..8. Strain components from ist to 6th column are *

* [Exx,Eyy,Ezz,Exy,Eyz,Exz], respectively. *

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION STRNZZ(8,6) ,E33(24)

C...Read strain data within a wedge-shaped element (the element attached on the

C crack front):

READ (8,1405) (STRNZZ(I,J),J=I,6)

1405 FORMAT (////9X,6(EI2.5)) [ ANSYS 5.5 format

1406 FORMAT (9X,6 (E12.5))

DO 1410 I : 2,8

READ (8,1406) (STRNZZ(I,J) ,O=l,6)

1410 CONTINUE

C...Calculate average strain 33 at the mid-side node on crack front:

E33(KE) = (STRNZZ(4,3)+STRNZZ(8,3))/2

1500 RETURN

END


